
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1997

Efficient processor management strategies for
multicomputer systems
Chung-Yen Chang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chang, Chung-Yen, "Efficient processor management strategies for multicomputer systems " (1997). Retrospective Theses and
Dissertations. 11966.
https://lib.dr.iastate.edu/rtd/11966

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11966?utm_source=lib.dr.iastate.edu%2Frtd%2F11966&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

EVFORMATION TO USERS

This manuscript has been reproduced from the microfihn master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Aitwr MI 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Efficient processor management strategies for mtilticomputer systems

by

Chung-Yen Chang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Major Professor: Prasant Mohapatra

Iowa State University

Ames, Iowa

1997

Copyright © Chung-Yen Chang, 1997. All rights reserved.

www.manaraa.com

UMI Nxanber; 9814626

UMI Microform 9814626
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

www.manaraa.com

a

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

Chung-Yen Chang

has met the dissertation requirements of Iowa State University

Committee Member

mitteejkienifee^

Comgitte^ Member

Committee Member

Major Professor

For the eradC rate College

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

Ill

TABLE OF CONTENTS

1 OVERVIEW 1

1.1 Introduction 1

1.2 Goal 5

1.3 Scope 6

1.4 Approaches 7

1.5 Organization of the Dissertation 9

2 RELATED WORKS 11

2.1 Processor Allocation 11

2.1.1 Allocation Schemes for Mesh Systems 11

2.1.2 Allocation Schemes for Hypercube 15

2.1.3 Other Allocation Approaches 16

2.1.4 Fragmentation Problem 17

2.2 Scheduling Approaches 19

2.2.1 Rearranging the Sequence of Execution 19

2.2.2 Multiprogramming in Multicomputers 21

2.2.3 Problems of Contemporary Scheduling Schemes 22

2.2.4 Real-Time Scheduling Schemes 23

2.3 Other Processor Management Approaches 23

3 RESTRICTED SIZE REDUCTION (RSR) SCHEME 25

3.1 Introduction 25

www.manaraa.com

IV

3.2 Suitability of Size-Reduction 27

3.3 The RSR Algorithm 28

3.3.1 Complexity Analysis 30

3.4 Performance Evaluation of the RSR Scheme 31

3.4.1 Simulation Enviromnent 31

3.4.2 Simulation Results 34

3.4.3 Comparing with the Limit Allocation 38

3.5 Discussion 42

4 MEASURING THE EFFECT OF PROCESSOR ALLOCATION

ON COMMUNICATION LATENCY 44

4.1 Introduction 44

4.2 Experiment Setup 47

4.2.1 Communication Models 47

4.2.2 System Environment .50

4.3 Results 52

4.3.1 Effect of Communication Frequency and Path Length 53

4.3.2 Effect of the Geometry of Allocated Processors 57

4.3.3 Effect of Interference 59

4.3.4 Effect on Job Execution Time 62

4.4 Discussions 63

5 ADAPTIVE NON-CONTIGUOUS ALLOCATION (ANCA) ... 66

5.1 Introduction 66

5.2 Adaptive Non-Contiguous Allocation (ANCA) 68

5.2.1 ANCA Scheme 72

5.2.2 Complexity Analysis of the ANCA Algorithm 76

5.3 Performance of the ANCA Scheme 78

www.manaraa.com

V

5.3.1 Simulation Model 78

5.3.2 Optimistic Scenario 80

5.3.3 Pessimistic Scenario 81

5.3.4 Performance Prediction of ANCA Scheme 84

5.4 Discussion 87

6 AN INTEGRATED PROCESSOR MANAGEMENT SCHEME . 88

6.1 Bypass-Queue (BQ) Scheduling 89

6.2 Fixed-Orientation (FO) Allocation 90

6.3 The Integrated Processor Management Scheme 92

6.4 Performance Evaluation 94

6.4.1 Performance of the Bypass-Queue Scheduling 95

6.4.2 Comparison among the Allocation Algorithms 96

6.4.3 Performance of the Integrated Policy 97

6.5 Discussion 101

7 JOB MIGRATION APPROACH 103

7.1 Introduction 103

7.2 Job Migration Process 104

7.3 Performance of the Job Migration Schemes 107

7.3.1 Performance of Individual Migration Approaches 108

7.3.2 Comparison Among Migration Approaches 113

7.3.3 Effect of Candidate Pool Size 114

7.4 Discussion 114

8 USING USER DIRECTIVES FOR PROCESSOR ALLOCATION 117

8.1 Introduction 117

8.2 User Directives for Processor Allocation 118

8.3 Performance of Hybrid Allocation Using User Directives 121

www.manaraa.com

vi

8.4 Modified RSR 127

8.5 Perfonnaxice of Processor Allocation Using Modified RSR with User Di

rectives 129

8.6 Discussion 129

9 CONCLUSIONS 134

9.1 Summary of the Proposed Processor Management Strategies 134

9.2 Concluding Remarks 138

9.3 Future Research 139

BIBLIOGRAPHY 141

www.manaraa.com

vii

LIST OF TABLES

Table 2.1 Fragmentation of Various Allocation Schemes 20

Table 3.1 Default Simulation Parameters 32

Table 3.2 Job Characteristics in Simulation 33

Table 8.1 Job Attributes and Possible Actions 120

i

www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1 Examples of Multicomputer System 3

Figure 2.1 Fragmentation Problems 19

Figure 3.1 Reducing Fragmentation in a Hypercube by Job Size Reduction. 26

Figure 3.2 The RSR-t Allocation for Hj'percube 30

Figure 3.3 Average Turnaround Time for RSR Schemes in a 32 x 32 Mesh. 35

Figure 3.4 Average Turnaround Time for Different Allocation Algorithms in

an 8-cube Using the Buddy Allocation with Exponentially Dis

tributed Service Time 36

Figure 3.5 Average Turnaround Time for Different Allocation Algorithms in

an 8-cube Using the Buddy Allocation with Truncated Normal

Service Time Distribution 36

Figure 3.6 Fragmentation vs. Traffic Ratio for RSR Schemes in a 32 x 32

Mesh 39

Figure 3.7 RSR vs. Limit in an 8-cube. (Exponential Service Time Distri

bution) 40

Figure 3.8 Fairness Comparison between the Limit and the RSR Scheme at

a Medium System Load (0.3) for an 8-cube System 42

Figure 3.9 Fairness Comparison between the Limit and the RSR Scheme at

a High System Load (0.7) for an 8-cube system 42

www.manaraa.com

ix

Figure 4.1 Synchronization Models 49

Figure 4.2 Flowchart of a Job Execution Cycle under Tight S3aichronization. 52

Figure 4.3 Message Latency vs. Job Size for the Nearest Neighbor Pattern. . . 55

Figure 4.4 Message Latency vs. Job Size for the Polling Pattern 56

Figure 4.5 Message Latency vs. Job Size for the Random Pattern 57

Figure 4.6 EflFect of Altering Geometry. 58

Figure 4.7 Layout of a Geometry-Altered Ring with Addresses 58

Figure 4.8 Message Latency in a Geometry-Altered System 60

Figure 4.9 Message Latency in the Nearest Neighbor Pattern when Interprocess

Interference is Considered 61

Figure 4.10 Message Latency in the Polling Pattern when Interprocess Interference

is Considered. (NN; Nearest Neighbor) 62

Figure 4.11 Message Latency in the Random Pattern when Interprocess Interfer

ence is Considered. (NN: Nearest Neighbor) 63

Figure 4.12 Change of Execution Time for the Nearest Neighbor Pattern 63

Figure 4.13 Change of Execution Time for the Polling Pattern. (NN: Nearest

Neighbor) 64

Figure 4.14 Change of Execution Time for the Random Pattern. (NN: Nearest

Neighbor) 65

Figure 5.1 Coverage and Reject Set with Respect to a Submesh Request of

Size < 4,3 > 73

Figure 5.2 Example of the Decomposition Process 75

Figure 5.3 ANCA-A Algorithm 77

Figure 5.4 Comparison of Maximum Utilization Allowing Different Adapt

ability. 81

Figure 5.5 Average Turnaround Time for ANCA with Different Adaptability. 82

www.manaraa.com

Figure 5.6 Average Turnaround Time for Different ANCA Policies in the

Pessimistic Scenario 83

Figure 5.7 Percentage of Contiguously Allocated Jobs 84

Figure 5.8 Predicting the Average Turnaround Time for ANCA 85

Figure 5.9 Predicting the Average Turnaround Time for ANCA 86

Figure 6.1 Reducing Virtual Fragmentation with the Fixed-Orientation Al

location 93

Figure 6.2 The Integrated Processor Management Scheme 94

Figure 6.3 Effect of the Bjrpass-Queue Scheduling to Different Algorithms. . 95

Figure 6.4 Average Turnaround Time of System using Different Allocation

Algorithms 97

Figure 6.5 The Integrated Processor Management Policy Using the Fbced-

Orientation Allocation and Bypass-Queue Scheduling 98

Figure 6.6 Variance of the Avg. Turnaround Time for the Proposed Inte

grated Processor Management Policy. 99

Figure 6.7 ASQT for the Integrated Processor Management Policy. 100

Figure 6.8 Effect of Threshold Time on Reducing the Average Turnaround

Time 101

Figure 7.1 Example of an Aggressive Job Migration Approach 106

Figure 7.2 Checkpoints and the Job Execution 108

Figure 7.3 Migration at Job Allocation (Uniform Jobs) 109

Figure 7.4 Migration at Job Departure (Uniform Jobs) 110

Figure 7.5 Aggressive Migration at Both Job Allocation and Departure (Uni

form Jobs) 110

Figure 7.6 Migration at Job Allocation (Normal Jobs) Ill

Figure 7.7 Migration at Job Departure (Normal Jobs) Ill

www.manaraa.com

xi

Figure 7.8 Aggressive Migration at Both Job Allocation and Departure (Nor

mal Jobs) 112

Figure 7.9 Comparison among Migration Approaches (Uniform Jobs). ... 113

Figure 7.10 Comparison among Migration Approaches (Uniform Jobs). ... 114

Figure 7.11 Effect of Candidate Pool Size (Uniform Jobs) 115

Figure 7.12 Effect of Candidate Pool Size (Uniform Jobs) 115

Figure 8.1 Using User Directives (Normal Jobs, mm = 0.3) 122

Figure 8.2 Using User Directives (Normal Jobs, mm = 0.6) 123

Figure 8.3 Using User Directives (Normal Jobs, mm = 0.9) 123

Figure 8.4 Using User Directives (Uniform Jobs, mm = 0.3) 124

Figure 8.5 Using User Directives (Uniform Jobs, mm = 0.6) 125

Figure 8.6 Using User Directives (Uniform Jobs, mm = 0.9) 125

Figure 8.7 Blocking Caused by a Job Allocated Non-Contiguously. 126

Figure 8.8 Comparison of the Folding Decisions 128

Figure 8.9 Using User Directives with Modified RSR (Normal Jobs, mm =

0.3) 130

Figure 8.10 Using User Directives with Modified RSR (Normal Jobs, mm =

0.6) 130

Figure 8.11 Using User Directives with Modified RSR (Normal Jobs, mm =

0.9) 131

Figure 8.12 Using User Directives with Modified RSR (Uniform Jobs, mm =

0.3) 131

Figure 8.13 Using User Directives with Modified RSR (Uniform Jobs, mm =

0.6) 132

Figure 8.14 Using User Directives with Modified RSR (Uniform Jobs, mm =

0.9) 132

www.manaraa.com

xii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Prasant Mohapatra for his continuous support

and guidance. I would also like to thank my committee members for their suggestions

that improve the quality of this report. Special thanks go to Dr. Jim Davis for his kind

helps when I needed them.

My family has always been supportive to me all these years. I appreciate their

patience and understanding. I would like to thank my wife Fumin and daughter Tingyee

for their love and tolerance. They make every day of my life enjoyable. I want to share

the honor of earning the Ph.D. degree with my parents. Their encouragement and

support make my pursuing of Ph.D. possible.

www.manaraa.com

xiii

ABSTRACT

Multicomputers are cost-effective alternatives to the conventional supercomputers.

Contemporary processor management schemes tend to underutilize the processors and

leave many of the processors in the system idle while jobs are waiting for execution.

Instead of designing faster processors or interconnection networks, a substantial per

formance improvement can be obtained by implementing better processor management

strategies. This dissertation studies the performance issues related to the processor

management schemes and proposes several ways to enhance the multicomputer systems

by means of processor management. The proposed schemes incorporate the concepts

of size-reduction, non-contiguous allocation, as well as job migration. Job scheduling

using a bypass-queue is also studied. All the proposed schemes are proven effective in

improving the system performance via extensive simulations. Each proposed scheme

has different implementation cost and constraints. In order to take advantage of these

schemes, judicious selection of system parameters is important and is discussed.

www.manaraa.com

1

1 OVERVIEW

Multicomputer systems provide cost-effective alternatives to the traditional super

computers. A large number of processors are ensembled to build a multicomputer sys

tem. Complex tasks can be carried out efficiently through parallel operations on these

processors. The performance of a multicomputer system depends on the cooperation

among the processors. Efficient management of these processors is hence essential to

exploit the potential of multicomputer systems.

1.1 Introduction

The basic building blocks of a multicomputer system is the processing unit. The

number of processing unit in a multicomputer system ranges from tens to thousands or

more. Each processing unit has its own execution units and memory. The processing

units executes the instructions and obtains parallelism through the cooperation among

multiple processor units. The cooperative effort among the processors is realized by

passing messages among them.

Processors are connected by an interconnection network in which messages travel

from their sources to destinations. The interconnection network is either directly con

nected in a certain topology or implemented with a switch-based multistage interconnec

tion network (MIN). Examples of multicomputer systems are illustrated in Figure 1.1.

Every circle represents a processing unit which includes the execution unit and memory.

Part (a) and (b) of Figure 1.1 are two of the most popular topologies, mesh and hyper-

www.manaraa.com

cube. Example of commercial machines using these topologies including Cray T3D/T3E

[1, 2], Intel Touchstone Delta [4], Paragon [3], and nCUBE [5]. Figure 1.1.(c) shows the

organization of a MIN-based multicomputer. Examples of commercial machines us

ing these organizations include IBM SP1/SP2 [6]. Among the topologies proposed for

multicomputer architectures, the mesh topology has gained popularity- because of its

simplicity, regularity, and ease for VLSI implementation.

Processors in a multicomputer are shared among different processes. Jobs are allo

cated to a subset of processors for execution. Processor management concerns the allo

cation of the computational resources to jobs in the system. In a practical environment,

multicomputers support a diverse mix of applications of various sizes and characteristics

in a dynamic fashion. To support the diverse mix of applications, the processor manage

ment scheme implemented has to utilize the processing units as efficiently as possible.

Two possible ways to achieve this goal include processor allocation and job scheduling.

Processor allocation involves selection of a set of processors for the execution of a job.

Jobs of different characteristics require different number of processors in a predefined

configuration (shape) similar to that of the system. The task of processor eillocation has

to fulfill these size and shape requirements. An executing job retains all the allocated

nodes for the entire duration of its execution.

Several processor allocation algorithms have been proposed for the mesh-connected

systems [7]-[26], and for hypercube-based systems [17]-[21] in the literature. Other

researchers have proposed allocation algorithms [22]-[23] for the k-ary n-cube based sys

tem [24]. These algorithms allocate a job to a set of contiguous processing nodes to

minimize the distance of communication paths and to avoid the interprocess interfer

ence. These allocation schemes are referred to as contiguous allocation schemes. Using

these schemes, the allocator identifies the free nodes and decides whether the free nodes

can form the required subgraph for the execution of a job. Allocation algorithms with

better recognition ability for available subgraphs can improve the chance of assigning

www.manaraa.com

3

(a) Hypercube

(b) Mesh

(c) Multistage Interconnection Network

Figure 1.1 Examples of Multicomputer System.

www.manaraa.com

4

a job into the system and reduce the waiting delay. However, as studies [28, 29. 42]

showed, significant performance improvement cannot be obtained by refining the con

ventional allocation algorithms. Because of the topological restriction, these algorithms

suffer from fragmentation problem. Contiguous allocation leads to several fragmented

groups of processors that cannot be used for the new tasks. Fragmentation is a serious

problem associated with the allocation algorithms and is the main factor that limits

their performance and will be discussed in detail in Section 2.1.4.

Non-contiguous allocation algorithms [25, 26] have been proposed to solve the frag

mentation problem by allowing jobs to execute on non-contiguous nodes. By lift

ing the restriction on shape requirement, better utilization of the processing units is

achieved. However, the strong correlation between the communication latency and pro

cessor allocation leaves the impact on job execution time diflScult to estimate. Jobs

allocated non-contiguously may incur high communication latency. Because of the un

predictable increase on communication latency caused by non-contiguous allocations,

the non-contiguous allocation schemes may not be suitable for general application envi

ronments.

Job scheduling is another approach to improve the performance of a multicomputer

system. It aims at reducing the queuing latency incurred by the jobs. The first-come-

fist-serve (FCFS) scheduling is often chosen because it has low time complexity and is

easy to implement. In the FCFS scheduling, a waiting job will block all the following

jobs from being serviced even if there are idle processors in the system. It has been

reported in [29, 30, 31, 32, 33, 34, 35] that by rearranging the sequence of jobs for execu

tion, queuing delay can be reduced. A job scheduler chooses the next job for allocation

and execution from the pending jobs. The blocking caused by fragmentation can there

fore be reduced. Other researchers [37, 38] have considered implementing the concept of

multiprogramming used in the uniprocessor environment for the multicomputer systems.

These scheduling schemes have shown promising performance improvement. However,

www.manaraa.com

0

they introduce significant overhead to the already complex allocation process. The high

complexities of several allocation algorithms restrict the use of any complicated schedul

ing policy. In addition, the difference between the uniprocessor and multicomputer

systems may cause the implementation of multiprogramming less desirable.

1.2 Goal

There are three areas of improvement that can be examined to enhance the perfor

mance of multicomputer systems. Faster processors speed up the execution of instruc

tions and hence reduces the execution time. Faster interconnection network with higher

bandwidth reduces the communication latency incurred by parallel jobs. Both methods

require redesigning or upgrading of the hardware components and are costly. The third

approach one can take is to implement better processor management strategy-.

Studies have shown that the performance of multicomputer systems are limited by

the inefficiency of the contemporary processor management policies. Mesh-connected

systems are limited to a utilization of as low as 55% and hypercube systems are limited

to about 70% utilization. In other words, the computational power of these systems

are not fully exploited. Instead of pushing the technology on the processor design or

pursuing a faster interconnection network, a considerable amount of improvement can be

achieved by employing a better processor management policy so that the computational

resources can be fully utilized.

The goal of this research is to improve the performance of multicomputer systems

through the development of better processor management policies. The processor man

agement approach, compared to others, is not only more cost-effective but also an essen

tial way of utilizing the resources that are already built into the system. The schemes

discussed in this dissertation are not only proposed from the performance perspective.

They are also easy to implement and have low computational complexities. Many pre

www.manaraa.com

6

viously proposed schemes, although effective in producing promising performance, incur

high implementation or computational complexities. The low complexity along with the

high performance make the proposed processor management policies attractive.

1.3 Scope

The scope of this dissertation is focused on the processor management policies in

multicomputer systems in a dynamic environment. We have chosen the mesh-connected

system as our target architecture because of its wide availability and success in com

mercial market. Commercial systems such as the Intel Paragon, Touchstone Delta are

constructed with the mesh topology. The research for processor management in mesh

systems is also less mature compared to that of the hypercubes. However, the general

concepts of these schemes are not limited to mesh systems. It is possible to modify the

discussed schemes for other multicomputer systems.

Performance of a system C£m be evaluated through a variety of metrics. It could be

latency of a job, utilization of a processing element, reliability of system, or throughput.

In this dissertation, we consider performance from a users' point of view in which the

average turnaround time is the main concern. Average turnaround time refers to the

time between the submission of a job and the time when it terminates. It demonstrates

the system's ability to handle the workload and reflects the services received by users

(jobs).

We have analyzed the scheduling policy for a system in a dynamic environment. In

a dynamic environment, the system has no knowledge about the execution time of a job

until its termination. Scheduling for such a system is done with only the information

about the number and shape of required processors. Static scheduling, in which the

characteristics of jobs such as sizes and run-time are known prior to scheduling, or real

time scheduling, in which jobs have certain deadlines to meet, are complex topics by

www.manaraa.com

themselves and are beyond the scope of this dissertation.

1.4 Approaches

The total time elapsed between the submission and completion of a job is called

the turnaround time for the job. The turnaround time of a parallel application can be

represented as a sum of three components,

^total ~ ^queue + 2comp + T'comm- (1.1)

The queuing delay, Tqueuei represents the time a job spends in the queue. It is a

function of the allocation algorithm and the scheduling strategy. The execution time of

a job consists of computation time, rcomp? and communication latency, Icomm^- The

computation time depends on the amount of computation required for an application.

It also depends on the amount of parallelism and the number of processors allocated to

a job. The communication latency is the time a job spent waiting for different subtasks

to exchange information. It is a function of the communication pattern of application

and the positions of allocated nodes.

By observing Equation 1.1 it is inferred that the key for better performance is to keep

the three delay components as low as possible. Tcomp depends on the job characteristics

and the power of the processing elements. Trnmm is affected by the communication

pattern of the application and the design of the interconnection network. Improving the

speed of the processing units helps reducing the computation time Tcomp- With faster

interconnection network, one can reduce the communication latency Trnmm. These two

improvements are not within the scope of processor management.

For a given multicomputer system, the speed of the processors and the intercon

nection network axe fixed. Processor management policy does not reduce Tcomp and

Tcomm directly. It is mainly targeted on reducing Tqueue- However, the three delay

^^comm is the part that is not akeady conciorrent with Tcomp-

www.manaraa.com

8

components are correlated. It is possible that minimizing one delay component results in

higher latency in one or the other two. For example, contiguous allocations focus on min

imizing Tcomm- Because of physical fragmentation associated with contiguous allocation

schemes, the system is underutilized and a large Tqueue is observed. Non-contiguous

allocation schemes reduce Tqueue by eliminating the fragmentation problem. However,

jobs may incur higher Trnmm in these schemes because of the longer communication

path and interprocess interference caused by allocating processors non-contiguously. It

is also possible to multiprogram jobs on a set of processor so that queuing latency is

reduced. Doing so causes the computation time to increase because the computational

power of the processors is shared among multiple jobs.

The queuing delay dominates the other two delay components in the turnaround

time of a job in a medium to heavily-loaded system. The average turnaround time of

jobs can be reduced if Tqueue can be reduced. A good processor management policy

reduces the queuing delay without introducing much overhead in the computation time

and communication latency.

This dissertation proposes several efficient processor management strategies for mul

ticomputer systems based on the trade-offs among the three delay components. Two

novel processor allocation schemes are proposed. A restricted size reduction (RSR)

scheme is developed based on the trade-off between the computation time and the queu

ing delay. The job size reduction technique incurs higher job execution time because of

the number of processors assigned to the execution of size-reduced jobs are less than the

number requested. An adaptive non-contiguous allocation (ANCA) algorithm allocates

jobs non-contiguously when fragmentation prevents the job from being allocated. The

non-contiguous allocation scheme violates the optimal communication paths and pat

terns in the original requests and may cause higher communication latencies. These two

processor allocation schemes are successfully in reducing queuing latency while keeping

the increase on the other delay components minimal.

www.manaraa.com

9

Rearranging the sequence of jobs for execution is able to reduce the queuing delay

without introducing overhead in the computation time or communication latency. A

scheduling policy based on a bypass-queue (BQ) technique is studied. It is effective in

reducing queuing delay but may causes the increase on number of allocation attempts

for the same stream of incoming jobs. To overcome this complexity problem, a fixed-

orientation (FO) allocation scheme which has low complexity yet efficient, is proposed

to be combined with the BQ scheme.

Another way to improve the performance via processor management is by performing

job migrations in order to reduce the fragmentation problem. Three variations of a job

migration scheme is proposed and compared. Performing job migration at the completion

of a job produces the lowest average turnaround time compared to migrating jobs at an

allocation failure or migrating at both completion and allocation failure.

A hybrid allocation scheme which combines the conventional allocation with the two

novel approaches, RSR and ANCA is also included in this report. The idea of a hybrid

allocation is to handle the processor management in an environment where some of the

jobs are sensitive to size-reduction or non-contiguous allocation. With the assistance

of user directives, the penalty associated with the two novel allocation approaches is

expected to be minimized and the system as a whole can benefit from the effective use

of the three allocation schemes. Interesting results are observed in this study and a

modified RSR algorithm is proposed to be used in such an environment.

1.5 Organization of the Dissertation

This dissertation is organized as follows. The next chapter surveys the related works

in the field of processor management in multicomputer systems. Comparison of the con

temporary schemes are discussed and their common problem is analyzed. Based on the

understanding of the problems associated with the contemporary processor management

www.manaraa.com

10

schemes, several new processor management strategies are proposed throughout the rest

of this work.

Chapter 3 presents the reduced size reduction allocation scheme. Chapter 4 is dedi

cated to the study on the effect of processor management to the communication latency

in multicomputer systems followed by the adaptive non-contiguous allocation in Chap

ter 5. Chapter 6 studies the integration between processor allocation and job scheduling

using the fixed-orientation allocation and bypass-queue scheduling. Chapter 7 evaluates

different approaches of job migration to reduce the blocking delay caused by the frag

mentation. The last processor management scheme proposed in this work in Chapter 8

considers an environment in which some of the jobs are not suitable for size-reduction

or non-contiguous allocation and therefore user directives have to be incorporated. Per

formance evaluations of the proposed schemes are carried out by simulation and are

reported in each chapter.

www.manaraa.com

11

2 RELATED WORKS

Many researchers have attempted to improve the performance of processor man

agement schemes for multicomputers. Two main tracks have been taken independently;

improving allocation algorithms and developing eflScient scheduling pohcies. A few other

approaches such as job migration has also been proposed. This chapter surveys these

approaches, their characteristics, their applicabilities, and their inadequacies.

2.1 Processor Allocation

Processor allocation schemes have been extensively studied by many researchers.

This dissertation is focused mainly on the mesh systems, only processor allocation

schemes for the mesh systems are surveyed in details. Processor allocation schemes for

hypercubes and other topologies are included with less details. The allocation schemes

are classified as either contiguous or non-contiguous. Some allocation schemes use nei

ther of these strategies and we have classified them into the other allocation approaches.

2.1.1 Allocation Schemes for Mesh Systems

Contiguous allocation algorithms for mesh systems search for available submeshes

in the system to execute the jobs. They are limited by the size and shape requirement

of incoming jobs. Non-contiguous allocation schemes loose the shape requirement to

achieve higher utilization of the system. We outline these allocation schemes proposed

in the literature.

www.manaraa.com

12

2.1.1.1 Contiguous Allocation for Mesh

The rationale behind the contiguous allocation schemes is to minimize the communi

cation latency incurred by jobs. By allocating a job to a contiguous set of processors, the

distance of the communication path and the amount of interprocess interference is min

imized. In addition, parallel programs are often optimized for the machine architecture.

By maintaining the allocated nodes in a shape that is requested, the communication

patterns in a job is most likely to be optimized.

Two Dimensional Buddy: The two dimensional buddy (TDB) [7] is a generalization

of the one dimensional buddy algorithm [17] proposed for storage allocation. The system

is assumed to be a square whose side lengths equal to a power of two. Jobs are assumed

to request square submeshes. The size of a requested submesh is rounded up to the

nearest power of two and are allocated a submesh of the corresponding size. Every

square submesh can form a larger square submesh with its three neighboring buddies.

Jobs are allocated to the buddies of processors. The TDB allocation suffers from internal

fragmentation because it only allocates square submeshes with the side lengths equal to

a power of 2. It is also not applicable for general systems such as the Intel Touchstone

Delta and the Intel Paragon because of its system shape requirement (the configuration

of Touchstone Delta and Paragon are not necessarily square). The time complexity for

allocating an {N x N) job in an (M x M) mesh when there are k jobs in the system is

equal to 0{k{^y).

Frame Sliding: The frame sliding method [8] is proposed to reduce the fragmentation

problem of the TDB allocation. It can be used for meshes of any size. The requested

submesh size and shape for a job is considered as a frame. A frame filled with free nodes

is considered available for the execution of the job. The algorithm slides the frame across

the system at non-overlapping locations to examine for a free submesh for the allocation

of the job. The checking can be done by verifying a bit-array which represents the status

www.manaraa.com

13

of the processors. The complexity of this allocation for an (m x n) job in an (A/ x N)

system is equal to

First-fit and Best-fit: The first-fit smd best-fit a.lgonth.ms [9] guarantee that a required

submesh can always be identified provided it exists. However, they fail to locate the

available submesh if the available submesh has different orientation than the required

one. These two algorithms scan a bit-array for the allocation process. Both algorithm

perform equally well at the same time complexity of 0{MN) in a (M x N) system with

t h e s p a c e c o m p l e x i t y o i 0 { M N) .

Adaptive-Scan: To further enhance the allocation ability, the adaptive-scan [10] changes

the orientation of a submesh when the required size and shape of submesh is not avail

able. By rotating the submesh request, the possibility of allocating a job is increased

and the performance is thus improved. This algorithm reduces the number of steps

in scanning the system for available processors by skipping the checking of unallocable

nodes.

Busy-List: A busy-list allocation scheme [11] is different from the other allocation

algorithms in the sense that it uses a busy-list for the checking process instead of the

bit-array used in other algorithms. It has the same submesh recognition ability as that

of the adaptive-scan policy.

Free-List: Free-list algorithm utilizing a list for processor allocation [12]. The free-

list scheme maintains a list of free submeshes for the allocation. Its allocation process

has a lower time complexity than that of the busy-list scheme but its deallocation time

complexity is higher. Its submesh recognition ability is similar to that of the adaptive-

scan and busy-list algorithms.

Quick Allocation: An algorithm called Quick Allocation is recently proposed in [13] to

allocate processors in a two-dimensional mesh environment. The basic idea of the quick

allocation is similar to the first-fit scheme except the overhead for searching the available

submesh is reduced. A set of adjacent processors called covered segment is identified for

www.manaraa.com

14

each row. Each covered segment indicates if the corresponding row has a potential base

for the allocation. Using the covered segment, the checking complexity is significantly

reduced and the allocation time is proven via simulation to be the lowest.

Stack Allocation: An allocation algorithm based on a busy list of the allocated sub

mesh and a stack-oriented search is proposed in [15], The reject set and cover set

corresponding to the job to be allocated is constructed using the busy list. The reject

set and cover set represent the locations where the base for the new submesh cannot be

allocated. A process called spatial subtraction is then used to subtract the reject and

cover sets from the possible locations for the base of the new job. The search process is

speeded up by using a stack and the allocation time is shown to be even shorter than

the quick allocation.

2.1.1.2 Non-contiguous Allocation Algorithms for Mesh

Hardware advances such as wormhole routing and faster switching techniques have

made the communication latency less sensitive to the distance between the communi

cating nodes. Several non-contiguous allocation algorithms have been proposed for the

mesh in [25] to utilize this concept. These include the naive, random, paging, and mul

tiple buddy system (MBS) The naive and random strategies allocate jobs based solely

on the size requirement. Random allocation is a straightforward strategy in which a

job requesting p processors is satisfied with p randomly selected nodes. Naive algorithm

allocates a request for p processors to the first p free nodes found in a row major scan.

A job is never denied service if there is enough processors in the system regardless of

the contiguity of the nodes.

The paging allocation maintains a partial contiguity of the allocated processors by

allocating predefined pages to a job. Internal fragmentation may occur if the number of

processors requested by a job is not a multiple of a page. The multiple buddy strategy

is an extension of the 2-D buddy strategy'. The system is divided into non-overlapped

www.manaraa.com

15

square submeshes with side-lengths equal to powers of 2 upon initialization. The number

of processors, p, requested by an incoming job is factorized into a base 4 representation

of di X {2^ X 2'), where 0 < cZ,- < 3. The request is then allocated to the system

according to the factorized number in which d,- number of 2' x 2' blocks are required. If a

required block is unavailable, MBS recursively searches for a bigger block and repeatedly

breaks it down into buddies imtil it produces blocks of the desired size. If that fails, the

requested block is broken into 4 requests for smaller blocks and the searching process

repeats.

2.1.2 Allocation Schemes for Hypercube

2.1.2.1 Contiguous Allocation for Hypercube

Buddy Allocation: Buddy allocation [17] originally proposed for memory allocation

is implemented on the nCUBE system for processor allocation. Every subcube has a

buddy of the same size. Two adjacent buddies can be combined to form a larger cube

for the execution of a larger job. A job is always assigned a subcube for its execution.

For an n-cube, the nodes are numbered from 0 to 2" — 1. For a job requiring a k cube,

the algorithm searches for the least integer m such that all the nodes in the region

[m2*, (m + 1)2*^ — 1] are available. This scheme does not provide a complete subcube

recognition ability in a dynamic environment. The time complexity of allocation and

deallocation in the above case are 0(2") and 0(2*^), respectively. By using an efficient

data structure [39], the complexity of allocation and deallocation can be reduced to

0 { n) .

Other Allocation Algorithms for Hypercube: Many other allocation algorithms

have been proposed for the hypercubes to implement perfect subcube recognition ability.

All these algorithms allocate jobs based on the free subcubes as does in the buddy allo

cation. Some examples include the multiple gray code [18], free list [19], tree collapsing

www.manaraa.com

16

[20] and PC-graph [21]. These algorithms implement high subcube recognition abilities

at the price of implementation complexities. The detailed discussion of these algorithms

can be found in the literature [18]-[21].

2.1.2.2 Non-contiguous Allocation for Hypercube

Three processor allocation algorithms are proposed for the k-ary n-cube in [22],

namely the k-ary partner, non-contiguous Multiple Buddy and Multiple Partner strate

gies. The k-ary Partner strategy is a conventional contiguous processor allocation strat

egy that improves subcube recognition. The non-contiguous Multiple Buddy and Mul

tiple Partner strategies address the problem of fragmentation by allocating jobs to non

contiguous processors. These algorithms are applicable to the hypercube systems when k

is set to 2. Another non-contiguous allocation algorithm based on the busy-Hst approach

is proposed in [27]

2.1.3 Other Allocation Approaches

A few allocation approaches are not clearly identified by the classification of contigu

ous or non-contiguous allocation. A rather unconventional approach taken to improve

the performance of the multicomputer system is by changing the size of the jobs. Chang

ing the job size to avoid fragmentation and reduce the queuing delay has been studied in

[40, 41, 42]. In [41], the authors proposed two allocation policies for the mesh-connected

system, namely the equi-partition and folding allocations. Both policies assumes the ini

tial submesh requirements are all equal to the size of the system. Jobs are also migrated

between nodes in the system. The job size assumption is not practical and the overhead

for migrating jobs are not ignorable. The two methods in [41] are hence less attractive

for the actual implementation.

The limit allocation is proposed for the hypercubes in [42] and is claimed to be the

most eflScient processor management strategy for the hypercube systems. Three limit

www.manaraa.com

17

allocation algorithms are proposed, namely the limit-k, greedy, and average. The basic

idea of limit allocation is to reduce fragmentation by limiting the maximum job size in

the system. In all but the greedy limit scheme, jobs can only be executed on subcubes

smaller than a limited size. Job that requires a subcube larger than the limit will have

to be folded to the limited size. This causes undenitilization of the system under low

load and results in poor performance. The major problem with the limit allocation is its

unfair treatment to jobs of different sizes. A folded job is executed on less processors then

it initially requested. This increases the load of every processor and the execution time

of the job is expected to increase. Comparing with the execution time of the unfolded

jobs, the folded jobs are obviously treated unfairly. The limit - ^ k allocation [38] is an

extension of the limit allocation to the mesh system. It searches for smaller submeshes

when the required submesh is not present Ln the system.

2.1.4 Fragmentation Problem

The main problem associated with the allocation algorithms is the fragmentation

problem which prevents the idle processors from being utilized. Fragmentation can be

classified as internal and external. The internal fragmentation is a result of allocating

jobs only to certain size submeshes. When a job is assigned to more processors than it

requires, the extra nodes allocated are not used for actual computation and are wasted.

This happens when a job requests a submesh that does not fit the requirement of the

allocation algorithm. As an example, internal fragmentation occurs when a job does not

require a square submesh with sides equal to power of two and is allocated using the

TDB scheme.

External fragmentation occurs when the allocation scheme caimot allocate the avail

able processors to the incoming jobs. It can be further divided into three types based

on their causes. The first type of external fragmentation is called insufficient resource

fragmentation. Everv" job requires a certain number of processors for its execution. If

www.manaraa.com

IS

the available processors in the system is less than the number required, the job cannot be

allocated. The second type of external fragmentation is a result of imperfect recognition

abUity of the allocation algorithms. A suitable submesh may exist for execution of a job

while the allocation algorithm fails to locate the available submesh. This type of external

fragmentation can be found in the TDB and the frame-sliding algorithms (if the frame

slides through more than one hop at a time). We refer to this type of external frag

mentation as virtual fragmentation. The third type of external fragmentation is caused

by dynamic departures of jobs. Nodes released by the terminated jobs can be scattered

in the mesh. They may not form a submesh big enough to accommodate the incoming

task although the number of free nodes may be sufficient. This type of fragmentation

is therefore referred to as physical fragmentation. Figure 2.1 shows a mesh system with

three busy submeshes highlighted in different shades. There are 27 free nodes in this

mesh. Using the conventional schemes, any job that requires more than 27 nodes cannot

be allocated because of insufficient resource fragmentation. Suppose a job requires a 2x3

submesh (2 rows, 3 columns). Using the frame-sliding algorithm (where the frame slides

by the height and width of the required submesh size), it will miss the free 2x3 submesh

in the mesh because of its imperfect recognition ability. This is an example of virtual

fragmentation. An example of physical fragmentation can be observed from the same

figure when a 4x5 submesh is required. The 27 available nodes do not form the required

shape and therefore will not be allocated with conventional allocation schemes.

The allocation schemes and their associated fragmentation are listed in Table 2.1.

The performance of an allocation scheme is inversely proportional to the fragmentation

it creates in the system. TDB is the only scheme listed with all fragmentation. Its per

formance is also the worst compared to the other allocation schemes in a dynamic system

environment. Frame-sliding has physical and may have virtual fragmentation. The first-

fit and best-fit algorithms have virtual fragmentation only when the submesh request

and the available submesh have different orientations. Their performance is slightly

www.manaraa.com

19

Row 0

Row t

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Col.0 Col.! CoL2 Col. 3 Col. 4 CoL5 CoL6 Col. 7

Figure 2.1 Fragmentation Problems.

worse than the other allocations that do not have virtual fragmentation. However, all

conventional algorithms cannot deal with physical fragmentation. RSR, non-contiguous

allocation, and ANCA are the only schemes that can reduce the physical fragmentation.

2.2 Scheduling Approaches

A variety of scheduling schemes for the multicomputers have been reported in the

literature [29]-[38] and [43]-[52]. Traditionally, scheduling in multicomputers is done via.

two approaches, multiprogramming or rearranging the sequence of jobs. Some previous

works have extended the scheduling problems in multicomputer systems to include the

real-time jobs.

2.2.1 Rearranging the Sequence of Execution

Research related to job scheduhng in multicomputers has been focused on arranging

the order of execution of the waiting jobs. Because of the blockade situation caused

by FCFS discipline, the processors are usually underutilized. Several processors can be

www.manaraa.com

20

Table 2.1 Fragmentation of "Various Allocation Schemes.

Scheme Internal Insufficient Virtual Phvsical
Fragmentation Resource Fragmentation Fragmentation

TDB Yes Yes Yes Yes
Frjime-Sliding No Yes Yes Yes
FF and BF No Yes Some" Yes
Adaptive-Scan No Yes No Yes
Busy-List No Yes No Yes
Free-List No Yes No Yes
RSR No Some^ No Some*^
N on-Contiguous No Yes No No
ANCA No Yes No Some**

"Only happens when the available submesh is in different orientation.
'Can be completely removed if size reduction allows aU jobs to be executed on a single node.
"^Can be completely removed if size reduction allows all jobs to be executed on a single node.
''Can be completely removed with Jidaptability set to jiUow all jobs to be allocated totally non-

contiguously.

left idle even when there are jobs waiting for execution. By executing the jobs in a

carefully arranged order, the blocking effect can be reduced. Examples of scheduling

policies taking this approach include the schemes reported in [29]-[35].

The scan scheduling policy [29] is a successful example of job scheduling scheme

for the hypercube system. It allocates jobs of the same dimension together to avoid

the fragmentation of the system. A similar reservation scheduling is proposed for the

hypercubes in [31], It attempts to improve the performance by allowing jobs to bypass

the waiting ones. To preserve fairness, a reservation mechanism is used to ensure the

waiting processes get the requested services after the completion of jobs running on their

reserved subcubes. The lazy [32] scheduling temporarily delays the allocation of a job

if any other job of the same dimension is running in a hypercube. The delayed job

is then executed on the existing subcube rather than acquiring a new subcube. The

fragmentation of the system and the blocking problem with the FCFS scheme are both

reduced.

In [33], a scheduling policy incorporating the priority and reservation techniques is

www.manaraa.com

21

proposed. The priority scheme is a variant of the priority scheduling in the uniprocessor

environment. The reservation method allows an unallocable job to reserve a submesh

in the system and allow other jobs to bypass it to avoid the blocking situation. The

reservation scheme may cause undenitilization of the system when the reserved submesh

has different size than the executing submeshes. A between-mthin queue (BWQ) scheme

is proposed in [34]. The BWQ scheduling imitates the idea of scan scheduling [29] in

the hypercube by segregating jobs according to their shapes and sizes. Jobs of similar

sizes and shapes wait in the same queue for allocation and the system keeps several such

queues for different sizes and shapes. The HELM scheduling [35] arranges jobs in three

different queues, namely the Entrance queue, Lookahead queue and High Priority queue.

Jobs are dispatched from these three queues according to different service disciplines.

2.2.2 Multiprogramming in Multicomputers

The concept of multiprogramming has been implemented in the [38] and the

TSS [37] strategies. Both policies require large memory space to store the information

of multiprogrammed nodes and incur high time complexities. In addition, there are

several disadvantages for using the multiprogramming concept along with space sharing

(through partitioning) in a multicomputer. First, the memory space on each processor

is usually smaller than that attached to a single processor system thus the number of

multiprogrammable jobs is limited. Second, jobs come in different shapes and sizes in a

dynamic system. Multiprogramming jobs of different sizes and shapes causes some pro

cessors to be underutilized when the system context switches to a different job. Third,

the synchronization of context switching is difficult to implement with the large number

of processors involved. Poorly synchronized system can result in unnecessary waiting or

even deadlock configurations. In addition, when jobs are swapped in and out from the

disks, excessive traffic is introduced into the interconnection network. This is a tremen

dous overhead and cannot be ignored. The multiprogramming policies (M^ and TSS)

www.manaraa.com

22

fail to address the above issues and thus may not be practical for real implementation.

These scheduling policies also require complicated operations to be performed in

addition to the allocation process. These operations introduce significant overhead in

the system. Another overhead caused by most of the scheduling policies is the increased

number of allocation attempts. Because the scheduling strategies try to utilize more

processors in the system, the scheduler causes the allocator to check the allocation

of more jobs to utilize the available processors. The increased number of allocation

attempts incurs very high overhead because of the high computation complexity of the

allocation algorithm.

2.2.3 Problems of Contemporary Scheduling Schemes

There are several problems associated with these scheduling approaches. A common

problem associated with all the scheduling strategies discussed is that they require ex

cessive storage for implementation. The multiple queues and the special data structure

required to implement these schemes pose a storage problem. The schedulers using the

reservation scheme requires additional queues to keep track of the jobs holding a reser

vation. For the lazy scheduling, separate queues are required for different size jobs. This

is also true for the scan policy. Second, the complexities of the scheduling approaches

are high. In addition to the underlying allocation algorithm used, the scheduler imposes

additional overhead for determining the order of the execution. Other than the high

complexity and extra storage requirement, the scheduling approaches fail to guarantee

a promising performance. In the reservation approach, a node can be idle waiting for

the availability of other nodes that are reserved together for the execution of the same

job. This causes the system to be underutilized and limits the performance. The perfor

mance gain of the scan policy is dependent on the workload environment. For example,

it does not provide a significant performance gain when the service time distribution

is hyper-exponential. There are also problems associated with the multiprogramming

www.manaraa.com

23

approaches as discussed in Section 2.2.2.

2.2.4 Real-Time Scheduling Schemes

Several scheduling schemes [43]-[52] are proposed for scheduling real-time jobs in

multicomputers. The difference between these scheduling schemes and the ones discussed

in this dissertation is on the time constraint. In real-time systems, jobs have deadlines to

make. The criteria for a good real-time scheduling strategy is to minimize the fraction of

jobs missing their deadlines. The execution time and the deadline requirement of a job

is known before entering the system so that the scheduler can perform the scheduling

based on the size and deadline requirements. The scheduling policies in this work deal

with the dynamic system in which jobs come into the system dynamically. The only

known properties about a job at submission is its size and shape requirement and the

optimization criteria for the scheduling is to minimize the average turnaround time of

jobs in the system.

2.3 Other Processor Management Approaches

Job migration has been proposed in [53] to solve the fragmentation for the hyper-

cubes. By moving jobs to one side of the system, the fragmentation is expected to be

reduced. The problem associated with the job migration approach is the selection of

migration path. A path across another process may interfere with the operation of that

process. Therefore the migration path has to be properly selected.

Migrating jobs causes other concerns. For instance, the rebuilt of the working set

in the cache is an overhead that has to be considered. In addition, once migrated,

the synchronization among all processors allocated to a job may be lost. Checkpointing

mechanisms have to be enforced to maintain proper synchronization among the allocated

processors.

www.manaraa.com

24

The schemes discussed in [41] also facilitate the idea of moving the processes in the

system. In addition, the equi-partition and folding approach also suggest to dynamically

change the number of processors allocated to a job. These schemes not only face the

problems associated with migrating jobs, also cause the concern on the feasibility of

implementation. The available parallelism in a job may not allow the dynamic changing

of allocated processor numbers.

www.manaraa.com

25

3 RESTRICTED SIZE REDUCTION (RSR) SCHEME

3.1 Introduction

To reduce the effect of fragmentation, the RSR scheme adaptively allocates jobs to

smaller size submeshes when fragmentation prevents them from being allocated. The

tradeoff for this scheme is between the queuing delay and the longer execution time

caused by executing jobs on smaller number of processors. The number of times that

size reduction can be applied to a job is restricted to minimize the side-effect of the

increased execution time caused by the size reduction. The allocation method is thus

called the restricted size reduction (RSR) method.

Size-reduction is a straightforward process in which a submesh is folded along its

longer side. If a hypercube system is considered, the folding is done by allocating the

job to a smaller dimension subcube which has only half of the processors. We use an

example to show how the performance of a multicomputer can be improved by reducing

the job size. Fig. 3.1 shows a 3-cube system in which the nodes (0,1) and (6,7) are

executing two different processes. Assume that a job which requires a 2-cube for its

execution is submitted to the system. Although there are sufficient processors to form

a 2-cube, no allocation algorithm can allocate this 2-cube job into the system because

the four available processors are fragmented in two disjoint 1-cubes. The requesting

job hence has to wait until either subcube (0,1) or (6,7) are released. On the other

hand, we can fold the 2-cube job into a 1-cube job which requires only two nodes. Then

the requesting job can start its execution immediately on nodes (2,3) or (4,5) and the

www.manaraa.com

26

fragmented nodes are utilized. The fragmentation in other topologies can also be reduced

in a similar fashion. Executing a job on a small number of nodes adaptively benefits the

performance in two ways. First, physically fragmented nodes are utilized which, in turn,

helps in accommodating more number of jobs in the system. Physical and insufficient

resource fragmentation are thus reduced. Second, waiting delay is reduced because jobs

can be allocated earlier. Quite often it might be advantageous to execute a task paying

a penalty of execution time than to wait for the availability of the required size and

shape of submesh.

An allocated node

A free node

Figure 3.1 Reducing Fragmentation in a Hypercube by Job Size Reduction.

The RSR scheme exploits this observation and has the following important charac

teristics.

1. The RSR scheme is a generic processor management concept and is not limited to

a single architecture or a particular allocation algorithm.

2. It is adaptive. A job is only folded when fragmentation prevents it from execution.

A job is always assigned the system resources it requested when the resources

www.manaraa.com

27

are available. This property guarantees that the system maintains a reasonable

utilization at all ranges of workload.

3. It is flexible. System administrators can determine the optimal restriction on the

size reduction according to the individual system's need and workload. Individual

job can also specify the number of size reduction it can tolerate to avoid perfor

mance degradation.

4. It has low storage and computation complexity compared to other approaches.

3.2 Suitability of Size-Reduction

Suitability of size-reduction needs to be addressed for the practicability of the RSR

scheme. In a multicomputer system, jobs come in different sizes according to their

inherent parallelism and resources requests. The inherent parallelism of a job prohibits

changing the job size randomly. However, we argue that it is safe to scale down a job

in a regular fashion. Degree of parallelism limits the maximum number of subtasks

that can be run in parallel. It is always possible to reduce the number of concurrently

running subtasks than to increase it. The nCUBE's software environment [65] explicitly

supports execution of a job on different size cubes. A program can be executed on a

subcube larger or smaller than the one specified when it was compiled. For applications

that require at least some certain number of processors to execute, it is still possible to

fold the program and run them on a smaller subsystem in a context-switching fashion.

However, the amount of size reduction is always restricted by the memory requirement

of the job and the memories available at the nodes. The RSR algorithms never reduces

the size requirement of a job if the available memory is insufficient.

Executing jobs on a reduced size submesh causes execution time to be longer. General

speedup studies [67, 68] state that for most of the applications parallel computers provide

www.manaraa.com

28

sub-linear speedups. Therefore, when a job is folded to half of the size it requested, it

is unlikely for the job's execution time to exceed twice of its execution time when its

request was granted without folding. Additionally, the communication overhead for less

processors is expected to be reduced for several reasons. First, the communication path

is shorter in a smaller subsystem. Second, the smaller number of processors in the smaller

subsystem causes less interference between messages transmitted by different processors.

Third, the frequency of interprocessor communication could be reduced because each

processor now executes a larger share of information. In the case of multiple copies of

program from the same task running on the same processor by context-switching, the

communication overhead could be even less because some inter-processor communication

might become intra-processor communication. Conservatively, it is safe to assume a

linear increase on execution time when a job is folded as is assumed in [42].

3.3 The RSR Algorithm

RSR scheme consists of two components, an underlying allocation algorithm and

a restriction on number of size reductions that can be applied to a job. RSR scheme

allowing at most t times of size reduction of a job is referred to as RSR-t allocation. A

job that gets to the head of the job queue is examined for allocation. If the embedded

allocation algorithm finds a suitable subsystem of free processors for the execution of

the job, the job is allocated for execution. If a subsystem of the required size cannot be

located, the allocator reduces the size of the job to the next smaller allocable subsystem

and examine the availability of free nodes for the job's execution. This process repeats

for a job until either the job is allocated or the number of times of size reduction (t) of the

job is reached. The queue is only stopped when the job at the head of the queue cannot

be allocated into the system after all allowable size reductions have been considered.

Once a job releases the nodes it holds, the allocation process will repeat until all the

www.manaraa.com

29

jobs in queue is allocated or the queue is blocked.

The RSR scheme is very flexible in the sense that any architecture and allocation

algorithms can benefit from this scheme. The reason for the restriction on job size

reduction is to ensure the performance gain of reducing fragmentation is not outweighed

by the loss of reduced parallelism in the application. The system administrator can

determine the maximum number of folding that a job can endure based on the system

status and the workload parameters to get the optimal performance. Individual jobs can

also specify their own restrictions to avoid unnecessarj^- increase on the execution time.

A job is only folded when fragmentation prevents it from execution. Jobs of all sizes have

the possibility of being folded. Fragmentation is greatly reduced using RSR. The internal

fragmentation and virtual fragmentation is associated with the underlying algorithm. If

the chosen algorithm is free from internal and virtual fragmentation, there will be no

internal and virtual fragmentation using RSR. Physical fragmentation is reduced because

the fragmented nodes can be utilized with reduced size jobs. In the extreme case, when

all jobs are allowed to be executed on a single processor, there will be no fragmentation

of any kind.

To describe the RSR algorithm for a particular architecture, two things have to be

considered, the embedded allocation algorithm and the restriction of the size reduction.

Any existing allocation algorithm can be used with the RSR scheme. Our results show

that a simple algorithm with the RSR technique can easily outperform the more robust

allocation algorithms. Therefore, it is advantageous to choose an algorithm with lower

complexity. The size reduction is done depending on the embedded allocation algorithm.

For instance in the mesh systems with TDB algorithm, reducing the size of a job once

results in a smaller square which requires 1/4 of the processors it requested before the

reduction. For all allocation algorithms in the hypercubes, a size reduction folds a job

into a smaller cube with half the number of the processors. The restriction of the number

of times that size reduction can be applied to a job is a parameter of system load and

www.manaraa.com

30

performance. An RSR allocation with the maximum times of size reduction allowed to a

job set to f is called RSR-t allocation. The size of a job is guaranteed to be reduced less

than t times to ensure that the performance gain. The sketch of the RSR-t allocation

in the hypercube system is shown below.

Step 1 Let k be the size of the subcube requested by the job to be allocated. Set the
minimum allowable size s = MIN{k — 0}.

Step 2 Check the availability of the k-cube using the embedded allocation algorithm. If
found, allocate the job and goto step 4-

Step 3 Set k to k — I. If k >= s goto step 2, else goto step 5.

Step 4 If the job queue is not empty, goto step 1 to allocate the first job in the queue.

Step 5 End

Figure 3.2 The RSR-t Allocation for Hypercube

Judicious selection of the value of t is essential to exploit the advantages offered

by the RSR allocation scheme. Some pointers toward the selection of the value of t

are discussed in Section 3.4.2.1. Reduction of job size beyond a certain times provides

neghgible performance improvement (if at all) with the increase in complexity. In the

hypercube system, if the maximimi number of folding allowed is set such that all the

jobs can be assigned to a single node when necessary, the RSR allocation is reduces to

the greedy allocation scheme reported in [42].

3.3.1 Complexity Analysis

Complexity of the RSR allocation depends on the underlying allocation algorithm

used. In a RSR-t allocation, the underlying allocation algorithm is called at most t

times to check the availability of free processors. The worst case for the complexity of

the RSR-t allocation algorithm would be 0{t x C{x)), where C{x) is the complexity

www.manaraa.com

31

of the underl3dng algorithm. As observed later, a maximum of 2 to 4 size reduction is

suflScient; thus adding very little to the complexity of the underljdng allocation schemes.

In many cases, the checking for all the different sizes can be done in one pass. For

example, if the buddy allocation is used for the RSR-t allocation in hypercube, instead

of checking the available subcubes with sizes in descending order, one can check the

subcube in ascending order from the minimum allowable size. A set of t variables can be

used as temporary storage for the possible locations of subcubes of different sizes. The

allocator can then assign the job according to the information stored in these temporary

variables. If the checking of all different size subsystems can be done in one pass as

stated above, the complexity of the RSR allocation is equal to the complexity of the

underlying cillocation algorithm. For example, the complexity of the RSR algorithm is

0{n) using buddy allocation on an n dimensional hypercube.

3.4 Performance Evaluation of the RSR Scheme

3.4.1 Simulation Environment

Two workload models have been used in [29, 69] to characterize the jobs in a parallel

computer system, the uncorrelated workload and the correlated workload. Uncorrelated

workload model assimies that the work demand of a job is not related to its degree

of parallelism. Therefore, jobs executed on more processors are likely to have shorter

execution time. This workload model agrees with the assumption used in the Amdahl's

law [67] for speedup. Correlated workload model assumes that the work demand of a

job depends on the number of processors used for its execution. Workload of a job can

be scaled up when more processors are allocated for its execution. This assumption is

justified by the Gustafson's law [70] which states that many scientific computation can

be scaled up to obtain higher accuracy when more processors are used. RSR allocation

reduces the number of processors allocated to a job and increases the execution time of

www.manaraa.com

32

the job. It is therefore safe for us to adopt the correlated workload in the simulation

of RSR scheme because the increase of execution time in correlated workload is more

significant than that with uncorrelated workload assumption. The RSR scheme should

perform better or equally well when the uncorrelated workload is assimaed.

Table 3.1 Default Simulation Parameters.

System Size (Mesh) 32x32
Service Rate 0.2
Number of Completions per Simulation 10,000
Jobs bypassed before data collection 1,000

Table 3.1 lists the default system parameters used in the simulations. This set of

parameters is also used in the rest of this dissertation unless otherwise noted. The system

simulated is a 32 x 32 mesh. The service rate for jobs is 0.2 thus the mean service time

is equal to 5. Each simulation collects the data for 10.000 job completions with the first

1,000 jobs bypassed to avoid premature data. Table 3.2 shows the parameters assumed

for the arrived jobs. Jobs are assumed to arrive in a Poisson process with the service time

assumed to be exponentially distributed. To demonstrate the performance of different

allocation schemes in a dynamic environment, different arrival rates are simulated. The

arrival rate is calculated from the traffic ratio which is defined as the ratio of arrival

rate to service rate. Size of a job in each dimension follows the same distribution

independently. Two different distributions for the submesh sizes are simulated. The

uniform distribution assumes the side-lengths of a job range from 1 to 32 with equal

probabilities. We also simulate tnmcated normal distribution for the side-lengths of

a job in which the mean is set to 16.5 with a variance of 6.6. The results presented

throughout the dissertation are collected over repeated iterations of the simulation to

reduce the possible margin of error.

To demonstrate the flexibility of the RSR scheme and to compare with the limit

allocation which is proposed for the hypercubes, the RSR scheme is also simulated for

www.manaraa.com

33

Table 3.2 .Job Characteristics in Simulation.

Job Arrival Process Poisson
Uniform Distribution P i = = 1 . . . 3 2
Truncated Normal Distribution Meanl6.5 with Variances.6

an 8-cube system. Job size in the hypercube simulation is assumed either uniformly or

normally distributed between 0 and 7 dimensions. Because an 8-cube job would have

to wait for the completion of all other jobs executing in the system for any allocation

scheme, it will have the same effect for any allocation scheme. Therefore, we have not

include 8-cube requests in our simulations. The probability for any request between a 0

and a 7-cube is equals to 1/8 for the uniform distribution. Jobs with normally distributed

dimensions are also simulated for the hypercubes. The normal distribution of the job

size is obtained by discretizing the probability of a normal distribution between —2.5cr

and +2.5cr of its mean. The probability obtained is normalized to one to include the

probability outside this region. The resulting probabilities for different job sizes in the

8-cube system are (pO = p7 = 0.025, pi = p6 = 0.076, p2 = p5 = 0.162, p3 = p4 =

0.237).

The metrics of interest in these simulations are the average turnaround time of jobs

to reflect the system performance from the users' perspective. The turnaround time of

a job is the time between its submission and completion. Systems with a low average

turnaround time is expected to complete a task faster than systems with a high aver

age turnaround time and also have higher throughput in general. Another important

indication of the system performance is the traffic ratio at which the system becomes

saturated. When a system becomes saturated and cannot handle the load, the average

turnaround time of the system increeises rapidly. This can be observed from the results

of the average turnaround time.

www.manaraa.com

34

3.4.2 Simulation Results

3.4.2.1 Average Turnaround Time for Jobs with RSR

The average turnaround time of the RSR scheme is compared with the other allo

cation schemes in Figure 3.3 to 3.5. The RSR scheme has shorter average turnaround

time for jobs in either mesh or hypercube-based systems. Using RSR, a job is executed

as early as the size reduction restriction allows. Therefore, it is less likely to block

other jobs. The improvement is more visible under high system load where the blocking

effect is more pronounced, and cause the average turnaround time to increase substan

tially. With RSR, this effect is reduced and therefore the average turnaround time is

also reduced.

Another observation made from these results is the tradeoff between the larger oper

ational range and the lower average turnaround time. When the system load is high, a

system needs to accommodate as many jobs as possible in order to avoid saturation. Al

lowing more size reduction makes this possible. However, as noticed in the RSR scheme,

allowing smaller number of size reductions provides shorter turnaround time under low

to medium load. This is because the allocations allowing more size reductions tend to

reduce the size of a job more often. As fragmentation is not serious under these loads,

execution time is the dominant factor in the average turnaround time. Therefore, allow

ing less number of size reduction avoids the unnecessary job size reduction and provides

a better performance under such loads. On the other hand, the system performance

improves rapidly with a small number of size reductions. The performance improvement

of allowing more size reduction is not significant at low to medium load. Higher number

of size reduction, although allows the mesh to be operated with a higher system load,

also have very high turnaround time at high traffic ratio because many jobs encounter

severe size-reduction. The execution time for a job requiring 1024 nodes may be in

creased 1024 times if it is folded down to a single node. Moreover, the size-reduction

www.manaraa.com

35

may be restricted by the memorj* space available at the nodes. In our experiments, we

have assumed suflBcient memory space at the nodes to demonstrate the eflfect of various

degree of size reductions. It is preferable to allow a small number of size reductions, such

as two or four, to improve the system performance while avoiding unnecessary overhead

caused by large nmnber of size reductions.

25
Rrst-Rt
RSR-1
HSR-2
RSR-«
HSR-10

40- 20 •

I P
I 1 5 -

I
c

RSR-10

J l o
t s -

0.3 0.6 0.9 1.2

Traffic Ratk)

1.5 1.8 0.6 1.2

Traffic RaOo

Zl

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 3.3 Average Turnaround Time for RSR Schemes in a 32 x 32 Mesh.

The RSR scheme is also simulated with the buddy allocation algorithm for the hyper-

cube systems. The results are shown in Figures 3.4. We also include a set of results for

the hypercube system in Figure 3.5 where tnmcated normal execution time is assumed.

The simulation for hypercube is conducted with varying system load. System load is

roughly equal to the system utilization before system saturation. The arrival rate A can

be calculated for a given system load as • 4.;^^ x system load. ° •' mean job sizexmean service time •'

Similar observation regarding the operational range of the system and the average

turnaround time of jobs can be made. The RSR scheme improves the operational range

of the system dramatically. The average turnaround time of jobs is also reduced with the

help of the RSR scheme. The turnaround time of the RSR schemes allowing less num

bers of size reductions have shorter tumciround time than those allowing larger numbers

of size reductions under low to medium load. Again this is caused by the penalty of

applying size-reduction to jobs.

www.manaraa.com

36

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 3.4 Average Turnaround Time for Different Allocation Algorithms
in an 8-cube Using the Buddy Allocation with Exponentially
Distributed Service Time.

03 OS

ts

t4

13
13

I"
to

I
7

t
oi 03

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 3.5 Average Turnaround Time for Different Allocation Algorithms
in an 8-cube Using the Buddy Allocation with Truncated Normal
Service Time Distribution.

www.manaraa.com

37

The RSR scheme improves the performance of both the mesh and hypercube systems

at especially high traflSc load. This is because of the blocking effect associated with the

FCFS discipline. Under the high system load, a job that cannot be allocated immediately

is more likely to block other jobs. Because of the FCFS discipline, all the succeeding jobs

will have to wait for this job before they can get into the system for execution. Using

the RSR, a job is executed as early as the size reduction restriction allows. Therefore, it

is less likely to block other jobs. The fragmented processors are also utilized to execute

the folded jobs. The turnaround time of the RSR schemes are hence shorter.

Another observation made from these results is the tradeoff between the larger op

erational range and the lower average turnaround time. When the system load is high,

a system needs to accommodate as many jobs as possible in order to avoid saturation.

Allowing more size reduction makes this possible. However, as noticed in all the algo

rithms simulated, the allocations allowing smaller number of size reductions provides

shorter turnaround time under low to medium load. This is because the allocations al

lowing more size reductions tend to reduce the size of a job more often. As the blocking

effect is not serious under these loads, the execution time is the dominant factor of the

average turnaround time. Therefore, allowing less number of size reduction avoids the

unnecessary job size reduction and provide a better performance under such loads. On

the other hand, the system performance is improved rapidly with a small number of

size reductions. The performance improvement of allowing more size reduction is not

significant at low to medium load. Higher number of size reduction, although allows

the system to be operated under a higher system load, also have higher turnaround

time when the system is heavily loaded. This is because many jobs encounter sever

size-reduction under this kind of system load. For example, the execution time for a job

requiring 1024 nodes may become 1024 times of its original execution time if it is folded

down to a single node. Moreover, the size-reduction may be restricted by the memory

space available at the nodes. In our experiments, we have assumed sufficient memory

www.manaraa.com

38

space at the nodes to demonstrate the effect of various degrees of size reductions. It is

preferable to allow a small number of size reductions, such as two or four, to improve

the system performajice while avoiding unnecessary overhead caused by large number of

size reductions.

3.4.2.2 Fragmentation of RSR Schemes

As fragmentation is the major cause of system underutilization, we compare the

fragmentation of several RSR schemes in the mesh. To capture the effect of processor

allocation schemes on the system fragmentation, we define a quantitative measure of

fragmentation. To include all kinds of fragmentation, it is defined as the summation of

ratio of available processors to the total number of processors at each allocation failure

divided by the total number of allocation attempt. Therefore, fragmentation is a function

of the system load and efficiency of the allocation scheme. At the same traffic load, a

better allocation scheme should produce less fragmentation. Figure 3.6 illustrates the

fragmentation of RSR schemes with different restrictions on size-reductions. Results are

shown for uniform and normal job size distributions. Both the distributions show similar

trend in the results. As the maximum size-reduction, t increases, the fragmentation is

reduced. Fragmentation is reduced in two ways. First, the physical fragmentation is

reduced because scattered nodes can be utilized to execute size-reduced jobs. Second,

the insufficient resource fragmentation is also alleviated because jobs are able to run with

smaller number of processors. In the extreme case of RSR-10, any job can be executed

on a single node. There is no fragmentation of any kind in this case.

3.4.3 Comparing with the Limit Allocation

The limit allocation is claimed to be the most efficient processor management strat

egy for the hjTjercubes and has many conceptual similarities with the RSR schemes.

Therefore, we compare the RSR scheme with the limit allocation for the hypercube sys

www.manaraa.com

39

0.3
First-Fit
RSR-1
RSR-2
RSR-4
RSR-10

nrst-Flt

-RSR-1

-RSR-2

RSR-4

RSR-10 I
S
c I 0.15 -0.15-i
o
«
IL

0.1 •

0.05 0.05

0.3 0.6 0.9 1.5 1.8 2.1 03 0.6 1.8 2.1

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 3.6 Fragmentation vs. Traffic Ratio for RSR Schemes in a 32 x 32
Mesh.

tem. Both schemes use the buddy allocation as the basic allocation algorithm. Figure 3.7

shows the mean response time for the limit allocations and the RSR schemes.

It is important to point out the similarity between the limit allocation and the RSR

allocation scheme before making comparisons. Both approaches allow the reduction of

job sizes. The limit-k allocation reduces all jobs larger than a k-cube to k-cube. The

RSR-t allocation allows the size of a job to be reduced at most t times. Therefore, it

is fair to compare the allocation from different family with the same maximum number

of folding. In the 8-cube system we simulated, limit-0 and RSR-7, limit-5 and RSR-2,

limit-6 and RSR-1 are comparable schemes. Notice that as discussed in Section 3.3,

the RSR-7 allocation is equivalent to the greedy limit allocation. Since it is pointed out

in [42] that the greedy allocation always outperforms or equally well than the average

limit allocations, we did not include the more complex average limit allocation in this

comparison.

Figure 3.7 clearly shows that between comparing schemes from the two families,

the RSR methods perform better than the corresponding limit schemes. The limit-0

allocation is not even shown in both figures because it has a high turnaround time at

www.manaraa.com

40

ajound 160 for the uniformly distributed job and at around 60 for the normal-distributed

job. All the limit-k allocations have relatively poor performance at low to medium load.

This is because of the underutilization problem discussed in Section 3.4.2.1. Because

larger jobs are forced to run in a smaller cube in limit allocation regardless of the system

load, the larger jobs always have longer execution time. In the extreme czise such as

limit-0, a job initially requesting for a 7-cube would spend 128 times of the execution

time when it is granted a 7-cube. Hence, the mean response time is increased. For the

RSR allocations, a job is folded only when necessary. Under a low input load, a job

almost never gets its size reduced and is executed at the full speed. When the load

increased, more jobs get folded. But since we restrict the number of times size reduction

can be applied to a job, increase on the execution time is limited.

i

• ' L

4
0.1 04 04 02 OS 07 ot

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 3.7 RSR vs. Limit in an 8-cube. (Exponential Service Time Distri
bution)

Along with the better performance, the RSR scheme also provides better fairness

toward job of different size than the limit allocation. Figures 3.8 and 3.9 show the average

turnaround time for jobs of different sizes at medium (0.3) and high (0.7) system loads.

The extreme comparisons between the RSR-7 and the limit-0 allocation are illustrated

in part (a) of both figures. The RSR-1 and RSR-2 are compared with the limit-6 and

limit-5, correspondingly. The turnaround time is plotted in logarithmic scale because of

www.manaraa.com

41

the big difference on the response time for the limit-k allocations. Limit-k family forces

all larger jobs to be executed on smaller cubes, therefore the execution time increases

linearly for jobs requiring cubes larger than the limit. This is directly reflected in the

response time for system under low to medium load in which the execution time is the

dominant factor. The RSR methods, on the other hand, only fold the jobs when they

have to. Under the low to medium input load, jobs are seldom folded, hence the response

time remains almost constant for different job sizes. Figure 3.8 depicts this observation.

For system under high load, execution time is no longer the dominant factor. This

is demonstrated in Figure 3.9. Limit-6 and RSR-1 have close response time for all job

sizes. This is because the longer queuing delay jobs experienced in such load outweighs

the execution time. RSR-2 and RSR-7 started to treat jobs unfairly at such a load.

Jobs requiring larger subcubes have higher turnaround time than smaller jobs. Size

reduction happens more often under heavy load. Since larger jobs are more likely to be

affected by the fragmentation, their sizes are more likely to be reduced. With a higher

size reduction restriction, larger jobs could be folded more than once. The reduction of

the job sizes increases the execution time of the larger jobs. The unfair treatment of

limit-0 and limit-5 is still visible under this load because the queuing delay still does not

outweigh the turnaround time for these two allocations yet.

As indicated in [42], the average limit improves the performance of the multicomput-

ers less efllciently than the greedy limit. The authors claims the greedy limit to be the

most efficient processor management strategy for the hypercube systems. The greedy

limit is a variant of our proposed RSR allocation scheme when the restriction of size

reduction allows all jobs to be executed on a single node when necessary. However,

our results in Section 3.4.2.1 points out that allowing too much size reduction results

in unnecessary folding of the jobs under low to medium load. The performance of the

system under such load is sacrificed with the excessive size reduction. Therefore, it is not

desirable to use the greedy limit allocation. In the normal operations of low to medium

www.manaraa.com

42

9 i>

« 1 2 a 4 f • 7

!"

iiiiiiii
0 t S S 4 C t T

(a) (b)

Figure 3.8 Fairness Comparison between the Limit and the RSR Scheme at
a Medium System Load (0.3) for an 8-cube System.

(a) (b)

Figure 3.9 Fairness Comparison between the Limit and the RSR Scheme at
a High System Load (0.7) for an 8-cube system.

load, the RSR schemes allowing the same number of size reduction outperforms the cor

responding limit-k allocations. The RSR schemes also provide much fairer treatment to

jobs of different sizes. Therefore, we conclude that the RSR scheme is better than the

limit allocations from the comparisons.

3.5 Discussion

The RSR scheme reduces the size of a job which may not be possible for some

applications. Memory threshold is another problem associated with RSR scheme. When

www.manaraa.com

43

a job i allocated to a smaller submesh, the storage requirement on ever\- nodes assigned

is increased. It is possible to exhaust the available memory by size-reduction and hence

results in heavy swapping of memory.

Judicious selection of maximum size reduction for RSR is important. Our results

suggest to use small values for this because the performance gains may be offset by the

tradeoffs with large number of size-reduction. In RSR, the tradeoff is the increased exe

cution time. By using small values for these parameters, the above problems of memory

space and communication overheads can also be avoided. RSR can be implemented

to allow individual jobs flexibility in specifying number of size reductions. With this

flexibility, a job requiring a large memory space can request the allocator to not fold it.

www.manaraa.com

44

4 MEASURING THE EFFECT OF PROCESSOR

ALLOCATION ON COMMUNICATION LATENCY

4.1 Introduction

One possible processor management approach to improve the performance of multi

computer is by allocating processors non-contiguously. The goal of this approach is to

eliminate the fragmentation problem. Non-contiguous allocation algorithms can be clas

sified as totally non-contiguous or partially non-contiguous. In a totally non-contiguous

allocation schemes, allocation is purely based on the availability of nodes while in partial

non-contiguous allocation, certain degree of contiguity is maintained among the allocated

nodes. Through simulation studies, the non-contiguous allocation schemes are shown

to reduce fragmentation effectively Queuing delay in a system using non-contiguous

allocation is expected to be less because of the absence of fragmentation. However, the

communication latency of a job allocated non-contiguously is increased because of the

increased distance of the communication path and the contention of messages in the

interconnection networks. There is also a possibility that the interprocess interference

may saturate the interconnection network and cause all jobs to experience very high

message transfer latency.

A message goes through three stages during its lifetime, the preparation stage, net

work stage, and the consumption stage. Preparation and consiunption stages are the

phases in which a processor processes the message to be sent and receive the message,

respectively. The network stage involves the actual time spent while a message travels

www.manaraa.com

45

through the interconnection network. A message experiences various delays in these

three stages. In the preparation stage, message may encounter queuing latency if the

outgoing links are occupied by previous messages or by messages that travels through

the links. A message may also have to wait in the receiving node's buffer before it

can be consumed if there are other messages destiued to the same nodes that have not

been consumed yet. The network stage contributes to the communication latency in

several ways depending on the switching techniques implemented in the interconnection

network. For instance, if the interconnection network uses circuit switching, then the

network stage includes setting up and terminating the connection plus the real trans

mission along the established path. If store-and-forward switching is used, this stage

include the entire duration of a packet being stored and forwarded along the path. When

wonnhole routing is used, then this stage includes the time for the worm to go through

from source to destination and all consequent blocking encountered by the worm.

Non-contiguous allocation can have a dramatic effect on the message latency. First,

non-contiguous allocation means longer communication paths between allocated nodes.

Liu et al. [25] argue that the longer communication paths play an insignificant role in the

communication latency if wonnhole routing technique is implemented. However, many

systems are not built with the wonnhole routed interconnection networks. Earlier system

such as nCUBE 1 and iPSC-1 use the store-and-forward switching mechanism. Even

with wonnhole switching, a longer path means a higher possibility of blocking the worms

and the blocking may cause a higher communication latency. The most important issues

about non-contiguous allocation is the contention on the communication links among

messages. This contention can cause the message to be blocked in the interconnection

network or cause it to be buffered at the sending node. These extra delay may cause the

interconnection network to be saturated and therefore causes the application waiting

indefinitely.

To validate the feasibility of non-contiguous allocation schemes, one has to show that

www.manaraa.com

46

the increasing communication latency is insignificant compared to the decrease in the

queuing latency. The communication latency in a wormhole-switched network has been

studied in [56]-[64]. Commimication latency is studied specifically with job allocations in

[25, 58, 59]. In [58] and [59], communication latency of allocated jobs in a multicomputer

are studied based on simulations. Both studies indicate the increase of message latency

is not significant when scattered allocation is applied. In addition, [58] also considers the

effect of synchronization which can be the major problem in a system with high variance

on communication latency. Liu et al. [25] conducted both experimental and simulation

study on the message passing latency in support of their non-contiguous allocation al

gorithms. Their simulation study agrees with the above observations. However, in their

experiment study conducted on Intel Paragon, an interesting result is shown when the

a more efficient OS (SUNMOS) is used. In that experiment, the communication latency

increase almost linearly with the number of contending messages. This is in contrast to

the simulation studies.

Lack of information about the communication latency in a non-contiguously allo

cated environment limits the applicability of the bounding estimation. Therefore, we

design a set of experiment on a nCube 2 multicomputer and measure the actual commu

nication latency experienced by jobs running on such a system. The significance of this

research is its realistic nature. Most of previous studies on communication latency re

garding processor allocation compromise the reality by making assumptions to simplify

the analytical modeling or are done through simulations. To our knowledge, no one has

attempted to perform a realistic measurement on a running system as this work presents.

Our restUts provide important information for designers of multicomputer systems for

choosing a better processor management strategy.

www.manaraa.com

47

4.2 Experiment Setup

An experiment on an nCUBE-2 multicomputer is conducted to evaluate the inter-

processor communication latency and study the effect of various processor allocation

schemes on the communication latency. Three communication models based on com

monly used applications are formulated to run with various allocations. We start the

discussion on our experiment design with these communication models, followed by the

experimental environment and our approach of measurement.

4.2.1 CommTxnication Models

A variety of jobs with different communication patterns are executed on multicom-

puters in scientific computation environments. Based on the communication pattern

commonly seen in parallel applications, we selected a few communication models for

this study. Study on the other patterns are in progress. The communication patterns

studied here are nearest neighbor, polling, and random. The details of these communi

cation patterns are described next.

• Nearest Neighbor: Every node communicates with its nearest neighbor for infor

mation exchange. The communication path, in this case, is usually short and

optimized. This is a typical communication pattern used in matrix manipulations.

• Polling: A central node sends a message to all the other nodes running the same

process. After receiving the message, the receiving node sends back a message to

the polling node. The central node can keep on sending without waiting for the

reply message until it finishes a round. The central node starts the next round of

polling after receiving the reply from all the nodes. This pattern is commonly seen

in programs where jobs are distributed to the processors and one processor remains

in charge of distributing operands and collecting results. This pattern creates a

www.manaraa.com

48

hot spot in the central node with which every node attempt to communicate. An

example of such applications is the exhaustive search of complex data structure

when load has to be dynamically balanced among the nodes. Polling is also used

for barrier synchronization and cache invalidations.

• Random: Every node picks its destination independently and sends out a message.

The receiving node sends back an acknowledgment and the sending nodes have

to wait for the reply before continuing its operation. Updating and managing a

large database system is an application that normally uses such a communication

pattern.

In real applications, a mixture of several communication patterns may be observed.

Although our experiment evaluates the effect of processor allocation on communication

latency for these communication patterns separately, it should provide a reasonable

understanding of the latency incurred due to various processor allocation schemes.

The traffic patterns have to be mapped to the topology of the system to optimize the

communication path. Polling and random patterns do not have an obvious optimized

mapping because of the uniformness of distribution of the destination nodes. For the

nearest neighbor pattern, we use a gray code mapping so that only the nodes which

have a Hamming distance of 1 intercommunicate. Hence the communication distance

is reduced to 1 hop for every message. In addition, to simplify the implementation

of our experiment, we implement the nearest neighbor pattern as a ring in which every

processor sends its message to only one of its neighbors and thus the allocated processors

form a logical ring.

Communication latency plays an important role in the average execution time of

jobs, especially when synchronization among nodes are considered. Two possible syn

chronization scenarios occur for different types of messages in parallel applications. In

a tightly synchronized scenario, a synchronizing message is expected when a message is

www.manaraa.com

49

sent to another node. A synchronization message may be an acknowledgment from the

receiving node or some information sent by another node. In the tightly synchronized

communication, the synchronizing message contains critical information for the destined

node to continue its operation. The execution of the program does not advance until it

receives its expected synchronizing message. The tightly s)Tichronized communication is

commonly seen in parallel applications such as matrix manipulations in which matrices

are divided into submatrices. To complete the manipulations, each node carries out

operations over the local data and the data need to be exchanged. The second type of

communication model is loosely synchronized. In this case, a synchronizing message is

expected but the processor waiting for this message is allowed to continue its operation

for a certain period of time before it gets stalled. The polling pattern in our communi

cation model is an example of loosely synchronized communication. The central node

which polls others nodes can continue its polling without waiting for an immediate re

ply from the polled nodes. The central node stops only between rounds of polling to

collect the response from all the polled nodes. Both types of synchronization models are

illustrated in Figure 4.1.

Tlnug (lijcnoi of a (VDcenor
Hmuif ifiafmn of i pracesxor

•
Gxnpatackai

Nlcmse Piepaiaboo

•
Idle due to lyodttooizifiao

Ml
Meuge awBuiupOoG (sync poioi)

5Bff~ SenSoi meuaietooifaeroode "
(a) Tightly Synchronized Communication Loosely Synchronized

Commimication

Figure 4.1 Synchronization Models.

www.manaraa.com

50

In Figure 4.1(a), messages are exchanged between the specific processor and other

processors in a tightly synchronized manner. After sending out its message, the processor

has to wait for the corresponding synchronization message to arrive before it can continue

its computation. Before the arrival of the synchronization message, the processor idles.

Figure 4.1(b) shows a loosely synchronized scenario. After sending out a message, the

processor continues on with its computation. If the synchronization message arrives in

time before the next round of synchronization, the processor does not have to idle.

However, if the second synchronization message misses its synchronization point, it

causes the processor to idle before its arrival.

4.2.2 System Enviroixment

We used an nCUBE-2 system as our test-bed, which has 128 processors in a seven

dimensional hypercube interconnect topology-. Each node is proprietary designed running

at 20 MHz. A proprietary operating system called Vertex is used.

Routing in nCUBE-2 is based on a deterministic model and is implemented in hard

ware. The mciximum distance between any two nodes equals to the dimension of the

subcube that encloses the two nodes. Wormhole switching technique is used to prop

agate messages between the nodes. Wormhole switching shortens the communication

latency and reduces the amount of buffer required in the switching hardware compared

to packet switching and virtual cut-through. Promoters of non-contiguous allocation

schemes suggest that the use of wormhole switching makes the communication latency

insensitive to the distance. The adoption of non-contiguous allocation may otherwise

not be feasible if a significant penalty on communication latency is incurred.

Our experiment is designed to study the effect of processor allocation and synchro

nization on the communication latency. Two things are particularly of interest, the effect

of contention caused by messages generated by different processes and the contention

caused by messages generated by the same process. Instead of a simulation-based study

www.manaraa.com

51

as done by previous researchers, we have targeted on measuring real communication la

tency for jobs running on an nCUBE-2 system. There were several problems that needed

to be overcome for this experimentation. First, it is necessary to devise a mechanism

such that the measurement of the latency and the collection of other information does

not affect the execution of the process. Measuring the communication latency on a node

executing a program may introduce extra workload on the processor. This overhead

should be kept at a minimum. Second, the current version of the nCUBE-2 OS, Vertex,

does not support the feature of non-contiguous allocation. One of the main purpose of

our study was to evaluate the effect of non-contiguous allocation. As this option was

not supported by the default operating system, we had to design a mechanism to handle

the scenario. Third, processors are only allowed to communicate with other processors

within an allocated subcube. Messages are not allowed to travel out of the boundary' of

an allocated subcube. It is therefore very difficult to measure the effect of contention on

the communication links due to messages generated by different processes. One of our

intentions was to study effect of contention between different processes, so we have to

somehow enforce such an interference to examine its effect.

To handle the problems mentioned above, the communication models are imple

mented on an emulator program. To overcome the lack of support for non-contiguous

allocation in the nCUBE-2, these communication models are programmed as pseudo jobs

contained in a large program. This large program runs as a hypercube emulator. A large

subcube is acquired for running the hypercube emulator and pseudo jobs were allocated

to any set of processors within the allocated large subcube. Upon loading, each proces

sor is given its own set of parameters which indicates its communication partners and

the characteristics of the pseudo job it executes. It then participates in the execution

of the pseudo job according to the given parameters. This approach allows flexibility in

various allocation options and job characteristics such as the non-contiguous allocation,

communication frequencies, and communication patterns.

www.manaraa.com

52

Running a profiling tool on top of a program to monitor its execution and communi

cation introduces overhead to the processor. If the overhead is significant, the measured

data from the monitored process differs from their actual values. Since the communica

tion latency is the main interest of this experiment, our implementation of pseudo jobs

hides the data collection and calculation in the computation phase of the pseudo jobs.

Figure 4.2 shows an example of the flowchart of the execution of a pseudo job. The flow

chart shown is for the jobs that are tightly synchronized. A similar chart is used for

loosely synchronized tasks. This implementation also provides the flexibility of varying

the communication frequency or the computation to communication ratio.

Figure 4.2 Flowchart of a Job Execution Cycle under Tight Synchronization.

4.3 Results

The emulator program is executed to evaluate the message latency with respect to

several variables. In case of polling, the central node polls each of the other processors for

1000 times before it is assumed to be completed. The nearest neighbor and the random

No

www.manaraa.com

53

jobs are assumed completed when every node has sent 1000 messages to its destination.

Between generation of messages, a delay interval is inserted to model the behavior of

a parallel application. In a real application, communication is done between phases

of computations. The amount of computation affects the frequency of communication.

The delay interval between message generations in our emulator models the computation

phase of a processor. A shorter delay interval represents a job with higher communication

demands and thus requires more frequent communications. A longer delay interval

represents a computation-intensive job. Two message sizes, 64 and 8000 bytes, are used

in our experiment. Additional information such as the destination address are included

in the packets for transmission making the actual packet size a little longer than 64

and 8000 bytes. The results shown in this section is the average taken over several

repetitions of the experiment. The latency or delay units shown in all the graphs are in

microseconds.

In the following subsections, we have reported results obtained through four different

types of studies. First, we evaluate the latency variation with respect to the delay inter

val. We also study the latency variation for different sizes of jobs thereby investigating

the effect of the communication path length on the latency. Second, we examine the

effect of the geometry (relative locations) of the allocated processors on the communica

tion latency. Third, the effect of interprocessor interference is studied when a message

belonging to one task may encounter messages belonging to different tasks along its path.

Fourth, we analyze the effect of different types of processor allocation on the execution

time of a task.

4.3.1 Effect of Communication Frequency and Path Length

Figures 4.3, 4.4, and 4.5 illustrate the relationship between job size and the message

latency with respect to the delay interval. The delay interval is the time between which

a node receives its synchronization message and generates its next message. It is worth

www.manaraa.com

54

noticing that the message latency is almost constant throughout the delay intervals.

Most researchers study the relationship between MTBT (Mean Time Between Trans

mission) and the message latency in wormhole routed networks and show a different

picture than that depicted in our results. The curves shown in such studies usually rises

up very fast after a certain traffic ratio. MTBT and delay interval both represent the

communication demand of a job with one major difference. When MTBT is used instead

of delay interval, the message latency is relatively constant except when the MTBT is

less than some certain value. However, our result of communication latency remains al

most constant for all delay intervals. This is because of the synchronization constrgunts.

As no new messages are generated during the delay interval because of the computation

and synchronization, messages seldom get queued and the communication latency is in

curred because of the transmission delay of the packets. Studies using MTBT usually

assume a random variable for the interarrival time of messages. A node can send out

many messages before its earlier messages are consumed by the receiving nodes. Because

of this unrealistic assumption that requires no synchronization, messages may be queued

indefinitely at the receiving nodes. The queuing delay makes the communication latency

intolerable for systems with low MTBT. However, in a real application, it is unlikely for

a node to send out messages in such an unrestricted fashion.

In Figure 4.3, no significant difference is observed between jobs of different dimen

sions. This is because the nearest neighbor traffic pattern has the shortest communica

tion path (1 hop each) and does not have any interference between messages. We have

assumed tight synchronization for the nearest neighbor communication. So no messages

are generated during the delay interval. The average latency remains almost constant

as the message are never queued at the destination nodes.

The result for the polling traffic shown in Figure 4.4 depicts an increase in message

latency when the dimension of a job is increased. This is believed to be caused by the

contention for the communication paths among the polling messages. In a larger cube,

www.manaraa.com

00

MMsag* Sizm m 64 bytw UMs«g« sm • 8000 bytM

|47S0

I
'<700

Oimen6«onii2
OtRMnMortaa

2000 3000 4000
D«liV (ntarvtl

SOOO 6000 2000 3000 4000
0«l«ylniirvu

SOOO 6000

(a) (b)

Figure 4.3 Message Latency vs. Job Size for the Nearest Neighbor Pattern.

not only the communication distance is incresised, but also the number of processors

that have to be polled is increased. The increased number of messages increases the

probability of blocking. When the path of a message is held by another message, it

has to be queued and therefore incurs delay before its arrival to the destination. This

observation contradicts some of the previously reported studies that claim that worm-

hole routing is completely insensitive to distance. The insensitivity is true only for a

contention-free network. The increase in message latency is prominent in Figure 4.4(b)

where the message length is high. For short messages (Figure 4.4(a)), the increase is only

seen with shorter delay intervals. Because short messages occupy the communication

path for a short period of time, it is less likely to cause other messages to be queued.

With shorter delay intervals, messages are generated more frequently, thus making it

possible for short messages to contend for the routes. With long delay intervals, the

communication paths are more likely to be cleared of previous messages and hence the

queuing effect is reduced. However, as in the case of nearest-neighbor communication,

here also the latency is almost constant for varying delay interval.

Latency curves for random traffic pattern is shown in Figure 4.5. In case of random

traffic pattern, higher dimensional jobs have higher message latency. Again, contention

www.manaraa.com

56

UMwg* Siz» • 64 eytas UMU9* Slza > 8000 bytat

Ik

-—

• OtfTMnmA*2!
-»-0<man«orta3'
-̂ Ditn<n»iQnw4:

Dimansion̂ -

1000 2000 3000 4000 SOOO 6000
0«(ty (ntarval

-Oim«Rsnrta3
- Oim«n«orto4

1000 2000 3000 4000 SOOO 6000
Octey MarvBi

(a) (b)

Figure 4.4 Message Latency vs. Job Size for the Polling Pattern.

on the communication links attributes to this increase. Because the number of nodes

In a higher dimensional cube is larger, the number of messages competing for the same

route is also higher. Additional contentions at the receiving nodes are also encountered.

Because each node picks its destination randomly, it is possible for a processor to receive

multiple messages at any instant. Messages that cannot be consumed by the receiving

node immediately are queued. The contention on the receiving nodes also attributes to

the higher message latency with shorter delay intervals. With a shorter delay interval,

the number of messages that can be queued at a node is increased and hence results in

an increase in message latency.

It is interesting to compare the results of the polling and the random patterns. When

short messages are considered, polling pattern always has shorter message latency than

the random pattern. This is because the polling pattern does not have contention on the

receiving nodes as the random pattern does. With shorter delay intervals, this contention

is more significant and causes a big increase in the message latency. Polling pattern does

have a longer message latency for high dimensional jobs because all the route contention

involves the central node as the origin of the path. The route contention in the random

pattern is distributed among all possible node pairs and therefore is smaller.

www.manaraa.com

O I

Meessge Size » 64 bytes Ueuege St* • aOOO bytee

2000 3000 4000
Oeiay InterveJ

(a) (b)

Figure 4.5 Message Latency vs. Job Size for the Random Pattern.

4.3.2 Effect of the Geometry of Allocated Processors

A parallel application is written to utilize the interconnection topology so that the

communication pattern and the distance of communication paths can be optimized.

There is a possibility for a higher communication latency in a job if the geometr\-

(relative locations) of the nodes allocated to the job is altered. Previously proposed

non-contiguous allocation schemes [25] have suggested to preserve partial contiguity.

Figure 4.6 shows a simple example of how the contention and the distance is affected

by altering the geometry of allocated nodes in a ring architecture. The communication

pattern in Figure 4.6(a) is optimized to use the ring topology. Each message takes only

one hop to reach its destination. No contention occurs between any two messages. If the

allocation of node 1 and node 5 is switched, as shown in Figure 4.6(b), almost all paths

become longer. Messages from node 0 to node 1, and messages from node 5 to 0 now

have to take five hops instead of one. Contention on all physical links that is shared by

more than one communication paths becomes highly likely.

We measure the effect of the geometry of allocated processors on the message latency

for the nearest neighbor traffic pattern. Polling and random patterns are not consid

ered here because of their uniformity in communication paths. For the nearest neighbor

www.manaraa.com

58

^ ^ ^ An optimized ring ^ - ' ' /

Physical links
(a)

Actual paths taken

(b)

Figure 4.6 Effect of Altering Geometry.

pattern, we alter the geometry of the allocated processors so that the two neighboring

nodes always have the highest possible Hamming distance. Figure 4.7 depicts the layout

of processors in the two and three dimensional cases with their bit addresses. By ar

ranging the nodes in such a ring, the distance between any two communicating nodes is

maximized and hence increases the possibility of contention between messages. Similar

rings with maximal Hamming distance between neighboring nodes can be obtained for

an n dimensional ring by assigning n — 1 digits Hamming code to every other node in the

ring. The addresses for the rest of nodes can be calculated by inverting the bit address

of the preceding nodes.

Figure 4.7 Layout of a Geometry-Altered Ring with Addresses.

www.manaraa.com

59

Figure 4.8 illustrates the results of the experiment on the effect of the geometry

of allocated nodes. The message latency in a geometry-altered system is compared to

that of a cube with optimized communication path. In the geometry-optimized cube,

processors are arranged in a gray-code ring for the nearest neighbor pattern. Message

latency remains constant for all delay intervals and for jobs of different dimensions. The

geometry-altered allocation produces significantly higher message latency in all the cases

studied in our experiments. Higher the dimension of the system, the larger is the penalty

of the communication latency due to altered geometry. When the dimension of a job is

small, the number of hops that a message has to travel through is limited. For example,

the longest route that a message can take in a 2-dimensional cube is only two hops.

Chances for messages to interfere with one another is Umited and thus results in less

penalty on the message latency. With a higher dimensional subcube, the contention on

the communication links is more serious and therefore more queuing is observed in the

message latency. This queuing delay is less significant when short messages are used and

the delay interval is long. The commimication link is only occupied by a message for a

small amount of time and therefore is less likely to cause messages to be queued in such

cases. If long messages and short delay intervals are considered, a significant difference

can be observed for jobs of different sizes, as shown in Figure 4.8(b). Therefore, the

geometry of allocated processors should be retained as much as possible to reduce the

message latency.

4.3.3 Effect of Interference

To measure the effect of interprocess interference, multiple jobs are allocated on

the cube that execute simultaneously. Jobs are allocated on the hypercube so that

the messages generated by one process have to travel through intermediate nodes that

belong to other jobs. There are many possible combinations of jobs and allocations. To

simplify the experiment, we allocate two different jobs, each of dimension 4, together in

www.manaraa.com

60

Uw*QeStee«64Dyl* Uessage Szs • 8000 oyt*

• 6000

5500

SOOO

252

4500
tooo 2000 SOOO aooo 4000 6000

(a) (b)

Figure 4.8 Message Latency in a Geometry-Altered System.

a five-dimensional cube. Each job is allocated on two non-contiguous three-dimensional

subcubes to measure the effect of interprocess interference in non-contiguous allocations.

Effect of interprocess interference is shown in Figures 4.9, 4.10 and 4.11.

Figure 4.9 shows the message latency for the nearest neighbor pattern job when it

is allocated together with the other two traffic patterns. The curve labeled original

represents the allocation of an optimized ring using the gray code sequence. The curve

labeled altered is the results obtained in the previous subsection when the geometry is

altered. The other two curves show the message latency when interprocess interference is

introduced. The original allocation provides an optimized conununication path for every

message causing no contention on the communication path and has the lowest message

latency. For both the short and long messages, an increase in the message latency is

observed when the geometry of the ring is altered. Interprocess interference caused by

allocating another job together does not show significant increase on the message latency.

The increase in the message latency for the short message is around 3% for all delay

intervals. The increase is more significant for long message with short delay interval. For

example, at a delay interval of 200 microseconds, this increase is around 45% compared

to that of the optimized allocation.

www.manaraa.com

61

Message Size • 64 Bytee Message Sze • 8000 Bytes
300 9000

290
7500

290
7000

270

260

• 2S0
a «
i 240

SSOO

230
SOOO

220
Random

4500
210

200 4000
1000 2000 SOOO 3000 8000 tooo 2000 3000 SOOO 4000 6000

(a) (b)

Figure 4.9 Message Latency in the Nearest Neighbor Pattern when Interprocess
Interference is Considered.

Figure 4.10 shows the effect of interprocess interference for the polling pattern. There

is no noticeable change in the polling pattern when short messages are used. A slight

increase is noticed for long messages when there is interference from another process.

However, the amount of increase is relatively small and is negligible. In some cases, a

small reduction in the message latency can be observed. This is due to the fact that

the traflBc spreads over a larger region and the contention on communication links is

reduced. The traffic generated by these processors communicating with one another is

spreaded over the allocated area. For communication intensive jobs, the communication

latency benefits from this spreading if other jobs do not introduce much interference.

Furthermore, a spread out area may allow more alternatives for routing paths while

employing an adaptive routing scheme [63, 64]. The number of active packets in the

network for polling pattern is small because the central node sends out its polling packets

to its destinations sequentially. Similar observation can be derived for the random

pattern with Luference as shown in Figure 4.11.

www.manaraa.com

62

M«sgag« Sz* • 64 bytas Vauaga Siz* • SOOO oytw
500

•Onqmat

8700

400

• 8SOO

350 S400

8300

300 8200

atoo

250 8000
0 TOOO 2000 3000 4000 SOQO 6000 1000 2000 3000 4000 5000

Miy intarval Oatay Marval

(a) (b)

Figure 4.10 Message Latency in the Polling Pattern when Interprocess Interfer
ence is Considered. (NN: Nearest Neighbor).

4.3.4 Effect on Job Execution Time

The execution time amounts to the total time a job spends on computations and

communication. We have ignored the I/O operation delays. The change in execution

time for nearest neighbor pattern is shown in Figure 4.12. Jobs requiring nearest neigh

bor communication pattern experience longer execution times when the geometry of

nodes is altered. This is because of the longer message latency caused by the altered

geometry. Interference from the polling and random patterns causes even higher change

in the execution time of a job as shown in Figure 4.12. However, the increase diminishes

for high delay intervals.

The effect of job interference for polling and random patterns are shown in Fig

ures 4.13 and 4.14, respectively. Both negative and positive changes zire observed for

these two patterns. The changes are small (between —0.5% and 0.5% for the polling

pattern, and —4% and 6% for the random pattern) for the short messages. It is more

insignificant when the long messages are considered. The negative change is caused by

the reduction of message latency as discussed in the previous subsection. However, delay

caused by unbalanced sv-nchronization negates this effect and increases the job execution

www.manaraa.com

63

Uwsaee Sin - 6* byiw MMsag* Siz« • 0000 Oytcs
1600

7400
t400

7200

7000
I'TOOO

5 s «»
s

6800

6600 j 600

200

6000
tooo 2000 3000 SOOO 0 4000 6000 1000 2000 5000 4000 6000

(a) (b)

Figure 4.11 Message Latency in the Random Pattern when Interprocess Inter
ference is Considered. (NN: Nearest Neighbor).

U«Ha9c Sin • 64 eyiM Si»«8000bym

•AMrvd
•w0i PoKng
•wth Random

D«iiy intafval DatoybMrval

(a) (b)

Figure 4.12 Change of Execution Time for the Nearest Neighbor Pattern.

time in most cases. Nevertheless, interprocess interference have a smaller effect on job

execution time compared to the effect of altered geometry.

4.4 Discussions

This chapter focuses on the effect of processor allocation on the message latency in

a multicomputer system. The novelty of this work is that we performed actual mea

surements of message latency on a real system and have studied a few issues that were

www.manaraa.com

64

M«a«9* SiM • A4 byta*

20Q SOQ tOOQ ¥ TOgq 4000 5000 6000

0«Mylntaml

(a)

0.5

0.4

aj

t"

T' J 0 iS
o-at

u
•OJ

-0.4

-OS

Uewge Sza e 9000 Dytw

•weiNN
Biwlft Random

1000 2000 3000 4000 SOOO 6000

Oâ lntarval

(b)

Figure 4.13 Change of Execution Time for the PoUing Pattern. (NN: Nearest
Neighbor)

not analyzed earlier. We have also considered realistic traffic patterns along with syn

chronization constraints. Three communication models including both tight and loose

synchronizations are implemented in our experiment. Message latency is measured for

different size jobs and communication demands. Two issues in processor allocation, the

geometry of allocated processors and the interprocess interference are evaluated. Both

processor geometry and interprocess interference affect the communication paths and

thus have direct impacts on the message latency.

Our results indicate a significant increase on the message latency if the geometry of

the allocated processors is violated. This is caused by the alteration of the optimized

communication paths from the original geometry. Parallel applications are usually devel

oped to optimize the communication paths. When the optimized communication path

is altered, contention for the communication links among messages causes the commu

nication latency to increase. The worst case increase measured is as high as 45% if a

long message size is used and the communication demand is high. Our results suggest

to maintain the geometry of allocated processors to preserve the optimized communica

tion paths. Although the results of interprocess interference indicate little or no impact

on processes with low communication demands, there is still a possibility of increase in

www.manaraa.com

65

Umm9« Szt • 6* DytM U««ag« Sm « 0000 bytM

0«i*y intsrvaJ [MaylnMrval

(a) (b)

Figure 4.14 Change of Execution Time for the Random Pattern. (NN: Neairest
Neighbor)

message latency in a large system or with a more scattered allocation. Partial contiguity

among allocated processors prevents the interconnection network from being saturated

and has to be maintained when possible. The multicomputer systems can benefit from

a non-contiguous allocation scheme if the geometry and contiguity of the allocated pro

cessors can be retained to some extent.

www.manaraa.com

66

5 ADAPTIVE NON-CONTIGUOUS ALLOCATION

(ANCA)

5.1 Introduction

Processor allocation plays an important role in utilizing the processors for executing

diverse applications. Conventional allocation algorithms [7]-[16] allocate a job to a set of

contiguous processing nodes to minimize the distance of interprocessor communication

path and to avoid the interprocess interference. A few recent effort have been focused

on the non-contiguous allocations [25]. Both approaches have their pros and cons. In

this chapter, we propose a novel allocation scheme, which in addition to contiguous

allocation, adaptively allocates jobs to non-contiguous nodes. It combines the advantages

of both approaches while avoiding the performance bottlenecks of them.

Performance of the contiguous allocation algorithms is limited by the fragmentation

problem. Fragmentation occurs when there are free nodes in the system but the alloca

tion algorithm fails to allocate these nodes to the waiting jobs. Significant performance

improvement cannot be obtained by refinement of contiguous allocation algorithms be

cause of the fragmentation problem associated with the nature of contiguous allocation

[29, 32, 33, 34, 35]. Current switching techniques such as wormhole routing have made

the communication latency less sensitive to the distance between communicating nodes

and therefore makes non-contiguous allocation plausible. Liu et al. [25] have proposed

several non-contiguous allocation strategies. However, their schemes are evaluated in a

restrictive sense because of the underestimation of the increased communication latency.

www.manaraa.com

67

The communication latency of a job allocated non-contiguously is increased because

of the increased distance of the communication path and the contention of messages.

Another factor that affects the communication latency is the geometry of the allocated

nodes. Parallel applications and algorithms are optimized to minimize the number of

communication steps and the distance of communication path [54]. Programs running

on a mesh are developed to suit the mesh topology. Traffic patterns and communication

paths are taken into consideration in the development of these programs. If the geom

etry of the nodes for an application is altered, the communication latency is expected

to increase because the communication pattern of the application no longer remains

optimized. Previously proposed non-contiguous allocations have not considered the ge

ometry of the allocated nodes. Studies on wormhole routing techniques have shown

that an unbalanced traffic pattern results in high message latency and can cause the

intercommunication networks to saturate quickly [56, 57]. Thus a job allocated on an

irregularly shaped submesh may create an unbalanced traffic pattern and can cause a

high communication overhead. This effect is more serious considering the possibility

of saturating the network. We therefore propose a partially non-contiguous allocation

algorithm that solves the above problems.

The proposed scheme allocates a job to the required submesh size if available. Based

on the availability of the processing nodes, a job may be broken into smaller subframes

for allocation. All subframes of a job have to be allocated simultaneously to avoid

synchronization problem. The number of times a job is divided is restricted by the

proposed algorithm. The geometry of neighboring nodes is retained in the subframes and

hence the communication overhead caused by the violation of geometry is avoided. The

proposed scheme adaptively allocates jobs to non-contiguous submeshes and is therefore

called adaptive non-contiguous allocation (ANCA) policy. The ANCA method improves

performance by efficiently reducing the external fragmentation.

Because of the rapid advancing technology and diversity of applications, the cost

www.manaraa.com

68

of communication latency is hard to estimate. Evaluation of the non-continuous al

location algorithms using approximate communication latency could be inappropriate

and misleading. Therefore, we choose to simulate the ANCA policy under two extreme

cases. An optimistic scenario indicates the best performance that can be achieved by

the ANCA policy. A pessimistic (if not the worst) case is also simulated to study the

limit on the potential gain of ANCA. The actual performance of the ANCA scheme can

then be predicted by the results from these two scenarios. ANCA policy is compared

with the first-fit algorithm under the two extreme cases. It is observed that a significant

performance gain can be obtained with the proposed algorithm when the communication

overhead caused by non-contiguous allocation is negligible. The study for the pessimistic

scenario shows the importance of choosing an appropriate adaptability. High adaptabil

ity, although provides a better performance gain in the optimistic scenario, has the

potential of saturating the network and thus does not guarantee a reasonable perfor

mance when communication overhead is considered. With low adaptability, the effect of

extra overhead caused by non-contiguous allocation can be limited to a certain degree

and thus guarantee the performance gain of the ANCA scheme. The probability of a

job being allocated non-contiguously is also studied for ANCA schemes.

5.2 Adaptive Non-Contiguous Allocation (ANCA)

Contiguous allocation schemes are prone to physical fragmentation. To alleviate this

problem, non-contiguous allocation which allows jobs to be allocated on scattered nodes

can be implemented. Non-contiguous allocation has the potential of improving the sys

tem performance by reducing fragmentation. We propose an adaptive non-contiguous

allocation (ANCA) scheme to improve the performance of mesh-connected multicom-

puters.

Non-contiguous allocation schemes minimize the queuing delay of jobs by allocating

www.manaraa.com

69

the waiting jobs to non-contiguous processors. By executing jobs on non-contiguous

processors, the communication latency is expected to increase. From Equation 1.1, the

following observation can be made. Let ATqueue and ^^comm represent the time dif

ference between contiguous and non-contiguous allocations. The idea of developing a

non-contiguous allocation algorithm is to maximize the value of ATqueue — ATcomm

so that the turnaround time of a job in Equation 1.1 can benefit from shorter queuing

delay without being penalized for the communication latency. Experimental study in

dicates that the queuing delay can be greatly reduced resulting in a high ATqueue if

the fragmentation can be reduced [29, 42, 40, 32]. Design of faster switching devices

and wonnhole routing techniques have made the message passing latency insensitive to

the communication distaiice making ATcomm negligible. Non-contiguous allocation is

hence a very attractive alternative for processor allocation.

Non-contiguous allocations can be classified into two classes, totally non-contiguous

and partially non-contiguous. In a totally non-contiguous allocation scheme, a job can be

allocated as long as the number of available processors is sufficient for its execution. In a

partially non-contiguous allocation, the nodes allocated to a job retain a certain degree

of contiguity. During the execution of a process, processors assigned to a job communi

cate with one another. When contiguous allocation is used, the traffic is localized within

the allocated submesh and causes no interprocess interference. With non-contiguous

allocation, a message may have to travel through intermediate nodes assigned to other

processes. Messages from difiierent processes compete for the communication links. Mes

sages that are blocked will have to be buffered and suffer extra overhead. Interprocess

interference is expected to be less in a partially non-contiguous allocation because the

local traffic in each contiguous region does not go through nodes assigned to other jobs

and is less likely to collide with messages generated by other processes. Local communi

cations within each region also cause no interference with messages generated by other

processes except those messages that trespass through its territory. The study on the

www.manaraa.com

70

effect of scattered processor allocation in a wormhole routed mesh [58, 59] agrees with

this observation.

The message passing contention experiment in [25] shows that the number of com

municating nodes is an important factor affecting the contention. The authors state

that with small packet size and less than 9 pairs of communicating nodes, the effect

of message contention is virtually negligible and hence support their non-contiguous

allocation schemes. The effect of contention is more visible when the interconnection

network is operated at a higher load. With diverse parallel applications, assumptions of

small packet size and less intercommunicating nodes may not be valid. Another problem

associated with message contention is its potential of causing network saturation. Once

a network is saturated, the message latency grows infinitely large and greatly degrades

the system performance.

Another issue which affects the turnaround time of a job is the geometry of the

processors assigned to it. Parallel applications and algorithms are optimized to minimize

the number of communication steps and the distance of communication path. If the

relative locations of the nodes for an application is violated, the communication latency

is expected to increase because the communication pattern of the application is no longer

optimized. Previously proposed non-contiguous allocations do not consider the geometry

of the nodes and will cause extra communication overhead. This overhead can degrade

the performance of the system to a great extent. Therefore, a non-contiguous allocation

algorithm which carefully considers the increase of communication latency has to be

derived.

Based on these observations, we derive the following conclusions regarding a good

non-contiguous processor allocation scheme.

• Non-contiguous allocation should not be applied when contiguous allocation is

possible to avoid the increase in Tcomm and the possibility of saturating the in

www.manaraa.com

71

terconnection network.

• When fragmentation prevents a job from being allocated, non-contiguous alloca

tion can be applied to reduce Tqueue-

• If a job has to be allocated non-contiguously, it is desirable to maintain some degree

of contiguity to avoid increase of Tcomm caused by interprocess interference.

• The geometry of nodes allocated to a job has to be retained as much as possible to

avoid the extra communication overhead by disrupting the optimal communication

pattern.

• For a job with high communication demand or system with slow communication

network, contiguous allocation prevents the introduction of communication over

head and is preferred. System manager or the user should be provided with the

flexibility of choosing the degree of non-contiguity.

The adaptive non-contiguous allocation (ANCA) scheme is proposed to meet the

above requirements of a good non-contiguous allocation scheme. It always attempts

to allocate a job contiguously. When contiguous allocation is not possible, it breaks a

job request into equal-sized subframes. These subframes are then allocated to available

locations and thus take advantage of non-contiguous allocation. Within each subframes,

the relative positions among neighboring nodes is retained.

ANCA differs from existing allocation algorithms in two aspects. First, it combines

the advantages of both contiguous and non-contiguous allocation schemes. Unlike other

non-contiguous allocation algorithms which allocate all jobs non-contiguously, ANCA

only allocates jobs non-contiguously when physical fragmentation occurs. Second, it

preserves the geometry of nodes in jobs which is important but not considered in previous

non-contiguous allocations.

www.manaraa.com

5.2.1 ANCA Scheme

Before we present the ANCA scheme, some terminologies need to be defined for the

ease of explanation. A mesh system is denoted by M(w,h) where w is the nmnber of

columns and h is the nnmber of rows of processors. A job J is denoted by J(m,n) where

m and n represent the number of columns and rows of processors, respectively, required

for the execution of job J. A submesh can be identified by its lower-left comer which is

referred to as its base.

Definition Busy Array: For a mesh M{w, h), its busy array, B is an array in which the

element has a value 1 (0) if processor < i,j > is busy (idle).

Definition Coverage: The coverage of an allocated submesh, /, with respect to an

incoming task J is a collection of processors each of which, when served as the base of

J will cause overlap between I and J. The union of the coverage of all the allocated

submeshes is the coverage set of the system for the incoming task.

Coverage can be classified as left coverage and bottom coverage. Left coverage is the

region of the nodes on the left side of an allocated job which cannot be served as the

base of the incoming task. Bottom coverage is the region of the nodes below the left

coverage and the allocated task which cannot be served as the base for the incoming

job.

Definition Reject Set: The reject set with respect to an incoming task is the set of

processors which can never serve as the base of an available submesh for accommodating

the incoming tasks. The reject set contains the processors in the top rows and the right

columns. An example of the coverage and the reject set for an allocated job is illustrated

in Figure 5.1 in which the processors are represented by the intersections of the horizontal

and vertical lines.

Definition Coverage Array: For a mesh M{w,h), its coverage array with respect to an

incoming job J — (it;', h') is C[w — w' -'rl^h — h' + 1], in which C[i,j] is equal to 1 (0) if

www.manaraa.com

73

Left O verage

B

Cov Tage

jooml loveraj :e

1 r
Rejei I Set

A [locate I

Figure 5.1 Coverage and Reject Set with Respect to a Submesh Request of
Size < 4,3 >.

processor < i, j > is (is not) in the coverage set. A 0 in the coverage array indicates the

location for an available submesh for accommodating the incoming job. The coverage

array has a size of [w-w'+l, h-h'+l] which is smaller than the mesh size. This is because

the processors in the reject set cannot be served as the base for the incoming task and

are not included in the coverage array.

We define adaptability as the measure of the allocator's ability to adjust its alloca

tion policy according to the system status. It is quantified by the number of times a

job request is splitted into smaUer subframes. An adaptability of 0 refers to a strictly

contiguous allocation. System administrators are allowed to decide the majomum adapt

ability for their system's needs. Individual applications can also specify their adaptabil

ity to allow communication intensive jobs to be allocated contiguously to minimize the

interconnection latency.

The ANCA scheme consists of two parts, a decomposition process and an allocation

process. Decomposition process splits a job into smaller subframes for allocation when

fragmentation prevents a job from being allocated to a required submesh size. The al

location process is used to check for the available processors. An ANCA scheme that

allows splitting of jobs for a maximum of .4 times (i.e. with maximum adaptability

www.manaraa.com

74

of jobs set to -4) is denoted as ANCA--4. ANCA always attempts to allocate a con

tiguous submesh to a job request whenever possible. If contiguous allocation fails, the

decomposition process is used. A new subframe size is generated for allocation in every

attempt. The allocation algorithm is then used to locate the number of subframes which

can satisfy the requirements of the job. When enough subframes are found, the job is

allocated. Otherwise, the decomposition and allocation process is repeated until the job

is allocated or the maximum adaptability is reached. We begin our discussion of the

ANCA algorithm with the decomposition and the allocation processes followed by the

complete algorithm.

Decomposition Process: The decomposition process splits the current subframes into

smaller subframes. The generated subframe size for the next allocation attempt equals

to one half of the current subframe size. There are three reasons for using a subframe

as the allocation unit. First, we want to maintain a certain degree of contiguity in

ever\- allocated region. By splitting a subframe into half of its current size, the sizes of

all subframes are equal except those on the edges. Therefore, the subframes of a job

maintain similar contiguity. Second, the geometry of nodes can be easily preserved using

the subframes with a simple direct mapping mechanism. Third and the most important

reason for using a subframe as the allocation unit is to simplify the complexity of the

allocation process. Our allocation algorithm uses a bit-array approach as used by most

of the contiguous allocations. Scanning the bit-arrays for possible allocation is the most

time-consuming part in the allocation algorithm. By using subframe as an allocation

unit, all free subframes in the system can be located by scaiming the bit-array in only

one pass.

In some cases, the resulting subframe size is not an integer and has to be rounded up

to the nearest integer. Internal fragmentation is introduced due to the rounding up effect.

This problem is solved by not allocating excessive nodes. A bookkeeping mechanism is

used to keep track of the exact number of processors needed for a job and therefore avoids

www.manaraa.com

75

allocating excessive nodes to a job. Two counters are used is the bookkeeping, -^^allocated

yallocated' major order is used to allocate the subframes. Upon allocation

of a subframe, a direct mapping of nodes from the original request to the subframe is

performed. After a subframe is allocated, the value of ^allocated ^ incremented by

its size in the x dimension. If ^allocated becomes larger than the job size in the x

dimension, is reset to zero and I/allocated incremented by the subframe

size in the y dimension. When 2/allocated becomes larger than or equal to the job size in

the y dimension, we would have the required number of subframes allocated. Figure 5.2

shows how a 5 X 2 submesh is splitted into subframes with adaptability 1 and 2. It also

demonstrates the mapping of the processors from the original request to the subframes

and how excessive nodes are discarded for actual allocation.

(li)) (M) (U> (U) (U)

(OJ)) tai) (OJ) (OJ) (0.4)

Coadguoui Allocodoa (AdapdviiytO)

i i i \\
(ij» (M) (ij)

(OJJ) (an (OJ)

\

(ij)) (I.I)

(OJ)) (ai)

(ij) (1.4)

(03) (04)

Afttx one splitting (Adaptivicy-.l)

(IJ) (IJ)

(OJ) (03)

(1.4)

(0.4)

After two splittings (Adapiivity:2)

_ , ^ I I Inienial fragmentation during scanning
Processors ui the requested submesh [| (Not anocaied for execution)

Figure 5.2 Example of the Decomposition Process.

Allocation Process: The first-fit algorithm [9] is extended for ANCA. The main con

sideration is to allow the co-allocation of multiple subframes with minimal complexity.

A coverage array is generated for the allocation of subframes. It is then scanned in a

row-major order to locate the free subframes as candidate subframes for the allocation.

The base of a candidate subframe is labeled as a candidate. When a candidate is found.

www.manaraa.com

76

the candidate subframe and its left coverage have to be marked as unavailable to prevent

the allocation of other subframe that overlaps with it. The bottom coverage does not

need to be marked because the scanning sequence of the rows prohibits the algorithm

from locating a candidate in another candidate's bottom coverage. Thus the time re

quired for marking the coverage array for bottom coverage is saved. If ANCA fails to

allocate a job using a particular subframe size, it can either split the subframe and retry

with a smaller subframe size or enqueue the job if the maximum adaptability is reached.

Complete Algorithm: The complete algorithm for ANCA-A is presented in Figure 5.3.

First, the coverage array is generated for the current subframe size. After the coverage

array is generated, the ANCA algorithm scans all the rows in the coverage array from

bottom up. In every row, the elements are scanned from left to right. If a 1 is found

at C[i.j], node < i,j > is labeled as a candidate for the allocation. The candidate

subframe and its left coverage is then marked as unavailable to avoid the allocation of

other subframe that overlaps with the candidate found for allocation. The counters,

^allocated J'allocated updated according to the bookkeeping process described

earlier. The scanning for the 1 's in the C array continues until ^allocated becomes larger

than or equal to the required submesh size in the y dimension. If the scanning fails to

find the required number of subframes for a job after exhausting the C array and the

limit on the splitting is yet to be reached, the job is further decomposed and retried for

allocation.

The processor relinquishment is simple. When a job departs, the busy array is

updated according to the nodes released by the departing process. The system is then

signaled for allocation of jobs waiting in the queue.

5.2.2 Complexity Analysis of the ANCA Algorithm

The space complexity of the ANCA algorithm involves storage of the busy array,

the coverage array, and the temporary storage for the candidate subframes. It is same

www.manaraa.com

Step I Let (w.h) be the system size, J=(m,n) be the job to be allocated. Let (w',h') be
the size of the subframe for allocation attempt. Set w'=m, h'=n. Set adaptability
of job, a, to 0.

Step 2 Fill the allocated submesh and their left coverage in the C array with the following
procedure. Scan all the rows in B[w,h]. Scan each row from right to left and
initialize left.cov:=w+l. Check B[i,j], if B[i,j]=l, set left.cov:=max(i-w'-hl, 0). If
i > left.cov, then set C[i,j]=l, else set C[i,j]=0.

Step 3 Fill the bottom coverage from C generated in step 2. Scan all columns in C from
left to right. Scan each column from top to bottom and initialize btm.cov:=h-f-l.
Check element C[i,j], if C[i,j]=l set btm.cov:=max(j-h'+l,0). If j > btm.cov, set
C[i,j]=l.

Step 4 Initialize the counters, and Vallocated 0.

Step 5 Scan all rows in the C array from bottom up. Scan elements in each row from
left to right. At element C[i,j], if C[i,j]=l, do nothing. Else,

(a) Set < i,j > as a candidate. Mark the candidate subframe at < i.j > and its
left coverage as unavailable in the C array.

(b) Increment by w'. If > w', increment yallocated
and reset to 0.

(d) If yallocated — candidates are found, goto step 7, else continue the
scanning from < i,j >.

Step 6 If a = A, goto step 7. Else, decompose subframe (w',h') into smaller sub frames.
Increase a by 1. Set (w', h') according to the size of the new subframes. If both w'
or h' becomes 1 after the decomposition, goto step 8, else goto Step 2.

Step 7 Allocate the job to the candidates found in step 5. To allocate the next job in
the queue, goto step 1.

Step 8 Allocation failed. Put the job in the system queue and wait for the departure of
an executing job for retrial.

Figure 5.3 ANCA-A Algorithm.

www.manaraa.com

78

as the first-fit algorithm except that in ANCA additioaal storage is required for the

candidates. The time complexity for ANCA in one iteration is slightly worse than the

first-fit algorithm because of the extra time taken for the marking of the candidate

subframes. The marking of the candidates in one iteration takes 0{mn). For allocation

of an m X n job in a it; x mesh, the big O representation for the time complexity is

0{wh -f mn) = 0{wh). Therefore the time complexity of the ANCA-A algorithm to

allocate a job is equal to 0{Awh + Amn).

5.3 Performance of the ANCA Scheme

5.3.1 Simulation Model

The ANCA scheme is studied with event-driven simulations. The simulated system

is a 32 X 32 mesh. The system parameters such as the arrival process of the jobs and

the distribution of job sizes are the same as in Table 3.1 and 3.2. Previous chapter

studies the effect of processor allocation to the communication latency of parallel jobs in

multicomputer systems. The results in that chapter indicate the important correlation

between processor allocation and communication but no solid latency model is derived to

show the amoimt of communication latency affected by the processor allocation schemes.

Due to the lack of a latency model to estimate the increased communication latency in

a non-contiguously allocated environment, two different scenarios are simulated for the

ANCA scheme.

An optimistic scenario assuming no communication overhead is simulated. It indi

cates the best performance that can be achieved by using ANCA. In the simulation, the

execution time of a job remains unchanged regardless of whether it is allocated non-

contiguously or not. This scenario reflects the possible performance of systems with

efficient interconnection network or jobs with low communication demand.

Communication overhead is exaggerated in the pessimistic scenario to estimate the

www.manaraa.com

79

limitation of ANCA policy in an operational mesh. Previous study [56] indicates an im

portant characteristic for the message delay of wormhole routed meshes. In a wormhole

routed mesh, message delay are relatively constant to various arrival rate of messages.

It grows slowly when the arrival rate of a message increases. Higher message arrival rate

means more contention for the communication links in the network. Once the message

arrival rate increases beyond the system's capacity, the network saturates and the mes

sage delay goes out of bound. Typically the effect of message contention increases the

average packet delay by less than three folds. We devise our pessimistic scenario based on

this characteristic. Another factor involved in the communication overhead is the ratio of

communication time over the total execution time for a job allocated non-contiguously.

The ratio of communication time to computation time for a job in multicomputers is

usually low. Our pessimistic scenario is devised to predict the limitation of ANCA policy.

It attempts to imitate the behavior of a near-saturation mesh. Therefore, we penalize

every non-contiguously allocated job by increasing its communication latency by three

times. This is higher than the latency incurred in most networks. We also set the com

munication time of a job at a high value of 30% of its total execution time. This is done

to ensure that most application will have a lower communication demand. By exagger

ating the message transfer delay and the communication demand of jobs, the pessimistic

scenario reflects the behavior of a near-saturation mesh with communication-intensive

jobs. In the pessimistic simulation, when a job is allocated non-contiguously, its commu

nication time is increased by three times to reflect the communication overhead caused

by non-contiguous allocation. The actual performance of a particular ANCA algorithm

can be predicted with the two curves drawn for its turnaround time in the optimistic

and pessimistic scenarios. However, this prediction is only valid when the communica

tion network is not saturated. Therefore, we also discuss the percentage of jobs being

allocated contiguously which is directly related to the possibility of network saturation.

www.manaraa.com

80

5.3.2 Optimistic Scenario

Figure 5.4 illustrates the maximum processor utilization of ANCA policy allowing

different adaptability at a very high traflSc ratio. Adaptability zero is equivalent to

the first-fit algorithm. Naive allocation [25] is cilso included in this comparison. Naive

allocation allocates processors to the incoming jobs in a predefined scanning order. A

job can be allocated as long as the number of processors in the system is sufficient for its

execution. It is free of any fragmentation and indicates the best utilization obtainable.

Other non-contiguous allocations proposed by Liu, etc. [25] are also free of fragmentation

and have the same maximum utilization as the naive allocation. The first-fit algorithm

has the worst utilization because of the external fragmentation of second kind as defined

in Section 2.1.4. ANCA allows jobs to be allocated on small subframes and therefore

reduces fragmentation. By allowing a higher adaptability, ANCA provides a better

utilization of the processors in the system. This is true with both job size distributions

- uniform and normal - considered in our simulations. With adaptability 10, jobs can

be splitted into subframes with only one processor and is thus free of fragmentation. It

has utilization equal to the naive algorithm.

In most cases, utilization provides a measure of the system performance. However, in

some cases, it can be misleading. As discussed earlier, partial contiguity and geometry

of nodes are important to lower the communication overheads. Therefore, the high

utilization achieved by non-contiguous allocation may not mean better performance. At

the same utilization, ANCA will provide better performance than other non-contiguous

allocation algorithms because of the partial contiguity and geometry it provides.

The most important metrics in evaluating an allocation policy is the average turnaround

time of a job. The turnaround time includes both queuing delay and execution time of a

job. Figure 5.5 illustrates the average turnaround time of a job with different adaptabil

ity. Both uniform and normal distribution of job sizes show similar trend. As expected,

www.manaraa.com

81

0.8 T 0.8 T

A=0 A>1 As>2 A=3 AM A'lO Naive

Adapttvity

A=0 A»1 Asi2 A=3 A=4 A»6 A=8 AalO Naive

Adaptivity

(a) Uniform Sized Jobs (b) Normal Sized Jobs

Figure 5.4 Comparison of Maximum Utilization Allowing Different Adapt
ability.

higher adaptability provides lower turnaround time because of the reduction of frag

mentation. This is a result of the reduction of the external fragmentation of the second

kind. The difference is noticeable with a small increase of adaptability from 0 to 1 or

2. The improvement on average turnaround time is especially significant at traflBc ratio

higher than 0.9. For lower traffic, queuing is seldom encountered and the turnaround

time is mainly dependent on the execution time of the jobs. At higher traffic, queuing

delay becomes a dominating factor in the average turnaround time. By applying ANCA,

fragmentation is reduced with the increase of adaptability and therefore the queuing de

lay reduces. Without using ANCA, the system gets saturated quickly after the traffic

ratio gets higher than 1.2. ANCA allows the system to work at higher traffic without

saturating.

5.3.3 Pessimistic Scenario

Figure 5.6 illustrates the average turnaround time for different adaptability when

the pessimistic scenario is assumed. Contrary to the observation of the optimistic sce

nario, the average turnaround time does not improve with higher adaptability. ANCA-1

algorithms performs slightly better than the first-fit algorithm with uniform job size

www.manaraa.com

82

Adapovity 0
Adaptivity 1
Adaplivity 2
Adaptivity 4
Adaptivity 6

Adaptivity 10

Adaptivity 0
Adaptivity 1
Adaptivity2
Adaptivity 4
Adaptivity 6
Adaptivity 10

Traftic Fiatio

(a) Uniform Sized Jobs

Figure 5.5

Traffic Ratio

(b) Normal Sized Jobs

Average Turnaround Time for ANCA with Different Adaptabil
ity.

distribution under low trafiBc. In all other cases, ANCA performs worse than the first-

fit algorithm except ANCA-10 in the normal job size distribution C£ise. ANCA-4 and

ANCA-6 have the worst performance among all policies tested. The poor performance is

a result of exaggerating the communication overhead. Higher adaptability allows larger

jobs to be allocated with more splitting and is less likely to be affected by fragmen

tation. It also tends to allocate more jobs non-contiguously. Execution time of jobs

allocated non-contiguously are assumed to increase and therefore higher adaptability

results in higher turnaround time. With the increase of adaptability, fragmentation is

also reduced. In the case of ANCA-10, the communication overhead is offset by the re

duced queuing delay and therefore produces lower average turnaround time compared to

ANCA-4 and ANCA-6. For normal job size distribution, job sizes tends to concentrate

at half of the system size in each dimension. Less fragmentation is expected because

of the concentration of job sizes. Therefore, with ANCA-10, the fragmentation can be

reduced by a great extent and a turnaround time lower than ANCA-0 is observed.

Another study conducted in this pessimistic scenario is the possibility of saturat

ing the interconnection network. As discussed in Section 5.2, non-contiguous allocation

may cause the interconnection network to saturate easily and therefore result in an un-

www.manaraa.com

83

50 T

45 •

40 • 40 •
t p 35
•o c 30
o

25
p

20 3 20 h- 20

di 15 • •
it

10 •• 10 ••

5 ••

0 -

-Adaptivity 0
-Adaptivity 1
-Adaptivity Z
-Adaptivity 4
-Adaptivity 6
-Adaptivity 10

(a) Uniform Sized Jobs

Figure 5.6

0^ 0.4 0.6 0.8 1 1.2 1.4 1.S

Traffic Ratio

50

45

40

35

30

25

2 0 • •

15

1 0 • •

5^
0
0.3

-Adaptivity 0
-Adaptivity 1
-Adaptivity 2
-Adaptivity 4
-Adaptivity 6
-Adaptivity 10

0.5 0.7 0.9 1.1 1.3 1.5

Traffic Ratio

(b) Normal Sized Jobs

Average Turnaround Time for Different ANCA Policies in the
Pessimistic Scenario.

operational system. VVe compare the percentage of jobs being allocated contiguously

in Figure 5.7. Higher percentage of contiguous jobs reflects a lower communication

overhead and can be interpreted as a lower possibility of saturating the interconnection

network. The first-fit algorithm is a strictly contiguous allocation scheme and hence al

locates all jobs contiguously. Percentage of contiguous jobs drops when traffic increases

because fragmentation occurs more often and requires more jobs to be splitted. Higher

adaptability have lower percentage of contiguous jobs under low traffic. At high traf

fic, medium adaptability such as ANCA-4 and ANCA-6 allocates less contiguous jobs

because these policies have longer queuing delay and therefore splits more jobs. In the

worst case, ANCA algorithm still allocates at least 2.3% of jobs contiguously. With a

lower adaptability set for the system, we can ensure a high percentage of contiguous

jobs and therefore prevent the interconnection network from saturating. For example,

ANCA-1 allocates 83.5% and 74.6% of jobs contiguously in the uniform and normal

distribution cases, respectively. Previously proposed non-contiguous allocation schemes

do not have this ability to maintain a high percentage of contiguously allocated jobs and

therefore have a potential of saturating the network and causes an unoperational system.

For example, the MBS scheme provides partial contiguity and is believed to have the best

www.manaraa.com

84

performance among Liu's algorithms [25]. In the MBS, a job can be allocated without

changing its submesh request only when its size equals to a buddy and when a buddy

of that size is available. In a 32 x 32 mesh, only square jobs with side lengths equal to

1, 2, 4, 8, 16, and 32 can be allocated contiguously. Assuming a uniform distribution,

the probability of having such a submesh request is equal to 6/1024. This probability

has to be multiplied with the probability of having an available buddy of the equal size

and therefore the actual percentage of jobs can be allocated contiguously in the MBS

scheme is much lower than 6/1024. It is very possible for the network to saturate with

so many jobs allocated non-contiguously, and in addition, have their geometry altered.

0.9 1.2

Traffic RaGo

0.9 1.2

Traffic Ratio

• First-Rt BAdaptivity 1 •Adaptivity2
DAdaplivity4 BAdaplivitye BAdapdvity 10

• Rrst-Fit BAdaptivity 1 BAdaptivity 2
•Adaptivity4 BAdaptivity 6 BAdaptivity 10

(a) Uniform Sized Jobs (b) Normal Sized Jobs

Figure 5.7 Percentage of Contiguously Allocated Jobs.

5.3.4 Performance Prediction of ANCA Scheme

Because of the rapid advancing technology and diverse applications, it is difficult to

accurately predict the performance of a non-contiguous allocation. Instead of assuming

a model for a specific workload as done in previous proposed non-contiguous allocations,

we chose to show the potential performance of the ANCA scheme with the two scenarios

simulated. The average turnaround time of a system implementing ANCA algorithm

would lie in between the two curves: the optimistic case and the pessimistic case provided

the network is not saturated.

www.manaraa.com

85

Figure 5.8 illustrates a comparison of the expected performances of ANCA-1 and

ANCA-10 compared to the first-fit algorithm for uniform job size distribution. ANCA-

1 performs better than the first-fit algorithm in most cases. Only at traffic ratio of

1.5, ANCA-1 has higher turnaround time than the first-fit algorithm in the pessimistic

case. The difference is insignificant compared to the turnaround time. Therefore, a

better performance than the first-fit scheme can always be expected using ANCA-1.

The curve drawn for the first-fit algorithm falls within the region bounded by the two

curv'es drawn for ANCA-10. This indicates a possible performance degradation using

ANCA-10 although the possible performance gain of ANCA-10 from the optimistic case

is higher. ANCA with other adaptability exhibits the same trend as ANCA-10 and

therefore ANCA-1 is the only scheme which can guarantee a performance improvement

with the uniform job size distribution.

40 r 50 y
45 ..

40
0 £ 35 ..
p

? 30 •
l a s -
1 20

35 ••

•Rrst-Fit
Optiiristic
Pessiinistic

•Rrst-FH
Optiiristic
Pessimistic

^ 25 •

1 20 •

^ 15
a
5 10

1 0 • •

0.7 0.7 0.9

Traffic Ratio

0.9

Traffic Ratio

1.3 1.1

(a) ANCA-1 (b) ANCA-2

Figure 5.8 Predicting the Average Turnaround Time for ANCA.

The simulation result for the normal job size distribution is illustrated in Figure 5.9.

The pessimistic case result for ANCA-1 is slightly worse than that of the first-fit. There is

a small possibility of worse performance than the first-fit algorithm using ANCA-1. The

results obtained for ANCA with other adaptability show similar trend except ANCA-

10. Both of the optimistic and pessimistic scenarios provide better performance than

the first-fit with ANCA-10. Better performance is expected pro\ided that the network

www.manaraa.com

86

is not saturated. However, as studied in tiie previous section, ANCA-10 allocates only a

few jobs contiguously and has a high possibility of saturating the network. On the other

hand, ANCA-1 allocates 74.5% of jobs contiguously and introduces less communication

overhead. Low adaptability is expected to provide performance improvement without

saturating the network.

In our results, ANCA-1 provides good performance improvement in the imifonn job

size distribution case. It also provides reasonable (if not better) performance when

normal distribution is assxmaed for job size. The curves for both the optimistic and pes

simistic scenarios for ANCA scheme can be refined to provide a better prediction of its

performance with better knowledge about the speed of the communication network and

the characteristics of the application programs. Because the communication overhead

for the near-saturation network is exaggerated in our simulation, the average turnaround

time for the pessimistic scenario may be lower. Therefore, .A.NCA with higher adapt

ability may also be suitable for implementation if the communication overhead can be

limited.

30

25 •• 25 •

P 20 F 20
Rrst-^nt
OptiiTistic
Pessimistic

0.3 0.S 0.7 0.9 t.1 U 1.5 0.3 OS 0.7 0.9 1.1 1.3 1.5

Traffic Ratio Traffic Ratio

(a) ANCA-1 (b) ANCA-10

Figure 5.9 Predicting the Average Tumaroimd Time for ANCA.

www.manaraa.com

87

5.4 Discussion

The ANCA allocates the requested submeshes if possible and hence minimizes the

communication latency. When fragmentation prevents a job from being allocated, it

splits the request into smaller subfreimes and allocates the job to the subframes. Each

subframe maintains a certain degree of contiguity and geometry. The proposed scheme

allows system administrator to choose an optimal value for adaptability. Adaptability

can also be specified for iudividual jobs to prevent a communication intensive job from

being allocated non-contiguously.

Simulation study indicates a significant performance gain when the communication

overhead caused by non-contiguous allocation is negligible. Jobs that have less commu

nication demand or systems with high speed interconnection network are most likely to

benefit from the ANCA policy. The pessimistic scenario simulation indicates a poten

tial limit on the performance gain of the ANCA scheme. High adaptability of system

causes many jobs to be allocated non-contiguously while introducing more communica

tion overhead. Possibility of ANCA with different adaptability is also discussed. Our

results prefers ANCA-1 over other ANCA policies because of its performance improve

ment and low possibility of saturating the network.

www.manaraa.com

88

6 AN INTEGRATED PROCESSOR MANAGEMENT

SCHEME

Both processor allocation and job scheduling schemes have been proved to improve

the performance of multicomputer systems. It is desirable to combine the advantages of

both processes into an integrated processor management scheme. However, the complex

ities associated with several proposed allocation algorithms and job scheduling policies

make the integration infeasible. In order to develop a feasible integrated processor man

agement scheme, both the allocation algorithm and job scheduling policy have to be

simple and efficient.

In this chapter, we propose a job scheduling strategy based on a simple bypass-queue

(BQ) technique. The implementation of the BQ scheme does not require additional

storage with respect to the first-come-first-serve queue. It also incurs a very low over

head to perform the job sequencing process. To take further advantage of the bypass-

queue scheduling, a fixed-orientation (FO) allocation algorithm is also proposed. The

proposed FO algorithm allocates jobs in a fixed orientation so that the physical frag

mentation is reduced. It has lower complexity than the other allocation algorithms. An

integrated processor management scheme can therefore be implemented by combining

the BQ scheduling and the FO allocation because of their low complexities. This section

describes the BQ scheduling and the FO allocation followed by the integrated processor

management scheme.

The following sections discuss the proposed bypass-queue scheduling and the fixed-

www.manaraa.com

89

orientation allocation algorithms. The performance evaluation of the proposed schemes

are presented in the end of this chapter.

6.1 Bypass-Queue (BQ) Scheduling

Because of the disadvantages of multiprogramming in multicomputers, scheduling

in the multicomputers has been focused on sequencing the order of execution for the

arrived jobs. It is observed that multicomputers are often underutilized because of the

blockade situation associated with the FCFS system. Many processors can be left idle

even when there are jobs waiting. By executing the jobs in a carefully arranged order,

the blocking effect of the FCFS queue can be dinainished as proved in the schemes

reported in [33, 34, 35, 38, 37]. However, these schemes require large storage space

for implementation of the required multiple queues and are also complicated from an

implementation standpoint.

We propose a bypass-queue policy to schedule job requests in the mesh system to

solve the problems associated with the other scheduling strategies. A bypass queue is a

\'ariation of the FCFS queue without the blocking problem. When the queue is activated

for allocation, the waiting jobs are checked for allocation in the order of their arrival as is

done in the FCFS queue. However, a job is allowed to bypass the unallocated jobs ahead

of it if it can be allocated. The process continues until all the jobs in the queue have

been checked or an executing job departs from the system. In case of a departure, the

entries in the queue are checked for allocation starting from the head of the queue. By

allowing a job to bypass the unallocated jobs, the performance is benefited in two ways.

First, the turnaround time of the jobs that get ahead are eflSciently reduced. Second,

the system is better utilized and is therefore able to provide better overall performance.

To ensure that every job can obtain the service after a reasonable waiting time, a

threshold time is set for the system. The threshold time is defined as the maximum time

www.manaraa.com

90

a job allows other jobs to bypass it before getting allocated. If any of the jobs waits

longer than the threshold time, the bypassing is disabled and the jobs are only served in

the FCFS manner. Because of the threshold time, a job only has to wait for the release

of the occupied nodes by other jobs if it has waited longer than the threshold time and is

at the head of the queue. The performance of this scheduling scheme varies with respect

to the threshold time as discussed and quantified in Section 6.4.

The BQ scheduling scheme does not require multiple queues to store jobs and can be

efficiently implemented with a linked-list. Jobs in the queue are represented as entities

in the list according to the order they arrive. The allocation of a job b}T)assing the

others is done by removing it from the list. The only extra operation compared to the

simple FCFS system is the monitoring of the threshold time. The algorithmic simplicity

and the minimum storage requirement makes the BQ scheduling extremely appealing.

6.2 Fixed-Orientation (FO) Allocation

Processor allocation algorithms can be classified as contiguous or non-contiguous.

The feasibility of non-contiguous allocation algorithms [25] depends on the trade-offs

between commimication latency and waiting delay. In this chapter, we consider only

the contiguous allocation scheme. Among the contiguous algorithms, the schemes pro

posed in [10, 11, 12] have drawn most attention because of their superior performance.

The better performance of these algorithms is achieved by allocating jobs in alternative

orientations. In adaptive-scan [10], the system is scanned for the available submesh re

quested by the jobs. When a requested submesh is not available, it is rotated by 90° and

the system is checked for the rotated submesh. This increases the possibility of allocat

ing a job into the system. The list-based algorithms [11, 12] also rotate a submesh for

possible allocation. They maintain a list of the allocated [11] or free [12] submeshes and

the allocation is done by checking the list instead of the bit-arrays commonly used by

www.manaraa.com

91

other algorithms. The list-based algorithms claim to have lower time complexities than

the adaptive-scan. However, the number of steps of operations for these algorithms do

not directly reflect the time required to perform the allocation process. The list-based

algorithms require complicated manipulation of a linked-list while the bit-array opera

tions used in the adaptive-scan is relatively simple. The actual time taken to perform

these algorithms is hard to compare because of the difference in the basic operations.

We propose a fixed-orientation algorithm for the mesh systems. Instead of changing

the orientation of a job after the allocator fails to find a suitable mesh, we allocate all

rectangular submesh requests in the same orientation. Either the width is always equal

to or larger than the height or the height is always equal to or larger than the width.

The orientation for allocation is chosen according to the orientation of the system. If

a job requests a submesh with different orientation than the chosen orientation, it is

rotated before allocation. Changing of the orientation requires translation of the logical

addresses of the processors in the allocated submesh. This translation of logical address

for processors is a trivial process and is described in [10].

The FO allocation has two advantages over the other algorithms. First, the alloca

tion time is smaller compared to the adaptive-scan and list-based algorithms. Because

ail jobs are allocated in a fixed-orientation, our algorithm only needs to check for the

available submesh in one orientation. The adaptive-scan and the list-based algorithms

consider two different orientations for each submesh and hence may take twice the time

to perform the allocation. Second, the fixed-orientation allocation has little virtual frag

mentation. Consider the example shown in Figiire 6.1 with jobs arriving in the labeled

order. Because of the inefiScient processor allocation, job 4 ends up being blocked as

shown. By forcing all the jobs to be allocated in the same orientation, all 4 jobs can be

accommodated. Also, it can be observed from this example that the location to place a

submesh does affect future allocations. If job 3 is placed on the right of job 2 instead

of on top of job 1, job 4 would be rejected for allocation. It is important to check the

www.manaraa.com

92

possible allocation according to the orientation chosen. For a system which has more

columns than rows, the x dimension has to be checked first, while for a system has more

rows than columns, the y dimension needs to be checked first. This helps better utilize

the space in the mesh and provides better possibility for future allocations. There is still

a small possibility of virtual fragmentation due to the dynamic departure of the jobs.

However, the simulation results in Section 6.4 indicate that the few virtual fragmentation

associated with fixed-orientation algorithm has insignificant impact on its performance.

The implementation of the FO allocation requires associating a flag, .rotated, with

each and every arriving job. Upon arrival, a job's orientation is checked. If it is different

from the orientation used for allocation, the flag -rotated will be set and the job is rotated

by 90". After the orientation is checked and the flag is set, a job is moved to the system

queue for allocation. Jobs waiting in the queue are allocated according to the service

discipline of the scheduling strategy. Any contiguous allocation algorithm can be used

for locating the submesh in the chosen orientation. Upon allocation of a rotated job into

the system, proper address translation of the processors can be performed as discussed

in [10].

6.3 The Integrated Processor Management Scheme

To take advantage of both processor allocation and job scheduling, the proposed

BQ scheduling and FO allocation are used in combination as an integrated processor

management scheme. Their low complexities are the main reasons for the integration.

To describe the algorithm of our integrated processor management scheme, we first

introduce the variables and data structure. A flag .rotated is defined as mentioned in

Section 6.2 for every job in the system. It is set upon the arrival of a job and used to

determine whether address translation is required when the job is allocated. A linked list

is used to implement the bj^pass-queue. All the waiting jobs are appended to the end of

www.manaraa.com

93

Job 4 cannot be allocated due to inefficient processor management

V ;

Job 4 allocated with the fixed-orientation allocation

Figure 6.1 Reducing Virtual Fragmentation with the Fixed-Orientation Al
location.

the list for future allocation. The information contained in the linked list include the size,

submission time, and the flag -rotated of the waiting jobs. Variable thresholdMme is the

threshold time set for the bypass-queue scheduling while earliest-submission represents

the submission time of the job at the head of the queue.

The integrated scheme consists of two main processes, job arrival and job departure.

A formal description of these processes is listed in Figure 6.2. The complexity for the FO

allocation is equal to the first-fit and best-fit algorithm. It is lower than the complexity

of the adaptive-scan and list-based algorithms because it does not have to check for the

alternative orientation of the submesh. The manipulation of the bypass-queue does not

introduce any significant overhead to the FCFS system. It does increase the number

of allocation attempts because of the bypassing. Therefore, it is even more important

to use an allocation algorithm with a low complexity such as the FO algorithm. The

www.manaraa.com

94

value of threshold time affects the performance of the integrated scheme. A system

administrator can determine the threshold time based on individual system's need. The

performance evaluation of our processor management scheme is presented in the next

section along with the discussion on choosing a proper threshold time.

Job Arrival:

Step 1 Check the orientation of the incoming job. Change the orientation and set
jTOtated if necessary.

Step 2 If queue is not empty, append the incoming job to the tail of the queue. Goto
step 4-

Step 3 If queue is empty, check for allocation of the incoming job. If job is success
fully allocated, assign processors to it and perform the required address trans
lation when -rotated is set. Otherwise, put the job at the head of the queue.

Step 4 Wait for next arrival or departure.

Job Departure

Step 1 If queue is empty, goto step 4, else set earliest-submission to the submission
time of the first job in the queue. Choose the first job in queue as the candidate
for allocation.

Step 2 If candidate is allocable, assign nodes to the candidate with proper address
translation (if required) and remove it from the queue. If the last job in the
queue has been checked, goto step 4-

Step 3 If (current-time — earliest-submission < threshold-time), set the next job in
queue as candidate. Set earliest-submission to the submission time of the first
job in the queue and goto step 2.

Step 4 Wait for next arrival or departure.

Figure 6.2 The Integrated Processor Management Scheme.

6.4 Performance Evaluation

Extensive simulations are conducted to evaluate the proposed FO allocation, the

BQ scheduling, and the integrated strategies. The simulation parameters are the same

as the ones used in Chapter 3. The BQ scheduling scheme is first evaluated with two

www.manaraa.com

popular allocation algorithms, the first-fit and the adaptive-scan. The first-fit algorithm

has no internal and very little virtual fragmentation. The adaptive-scan has only the

insufficient resource and physical fragmentation. The BQ scheme significantly improves

the performance of both of the allocation algorithms. The FO algorithm is then com

pared with the first-fit and the adaptive-scan to establish its feasibility. Results for the

integrated processor management scheme which combines the FO allocation and the BQ

scheduling schemes are also presented and discussed in this section.

6.4.1 Performance of the Bypass-Queue Scheduling

Figure 6.3 shows the effect of using the bypass-queue with different allocation schemes.

Figure 6.3(a) is for the first-fit and Figure 6.3(b) is for the adaptive-scan algorithm. Dif

ferent threshold time is considered for this comparison. The bypass-queue is equivalent

to the ordinary FCFS queue when the threshold is set to 0. The bypass-queue schedul

ing efficiently reduces the average turnaround time for both allocation schemes. It also

increases the operational range of the system. With the FCFS queue, the system gets

saturated quickly for traffic above 1.5. With the bypass-queue, the curve is flattened

and the system has a higher saturating point. Only the results for uniform job size

distribution is shown. The normal job size distribution exhibits the similar behavior.

so •
45
40

9

I 35.
•g 30 •
! « •

| 2 0 .

j IS •

10

5 11
0 •

0.1 05 1 13 0 0£ 0.4 0.6 0.8 1 1.2 1.4 1.6

Traffic Ratio Traffic Ratio

(a) First-Fit Algorithm (b) Adaptive-Scan Allocation

Figure 6.3 Effect of the Bypass-Queue Scheduling to Different Algorithms.

www.manaraa.com

96

The bypass-queue scheduling works efficiently with the adaptive-scan allocation.

A small increase in the threshold time results in significant reduction on the average

turnaround time. It takes a larger threshold time for the first-fit algorithm to gain

comparative performance improvement. The reason for this phenomena is the difference

in the recognition abilities of submeshes between these two schemes. The BQ scheme

allows jobs to bypass the blocking jobs for allocation and therefore reduces the average

turnaround time of the system. All jobs that arrive between the submission of the first

job in the queue and the expiration of the threshold time are candidates for the bypass

ing. Adaptive-scan has better submesh recognition ability than the first-fit algorithm

and is more likely to successfully allocate a bypassed job. In order to reduce the average

turnaround time with the BQ, the first-fit allocation needs a larger threshold time to

allow more candidates to bypass.

6.4.2 Comparison among the Allocation Algorithms

The FO scheme is compared with the first-fit and adaptive-scan allocations. Fig

ure 6.4 illustrate the comparisons with the uniform job size distribution and the normal

job size distribution, respectively. The FO scheme outperforms the first-fit algorithm

as expected because of the reduced virtual fragmentation by allocating jobs only in a

fixed orientation. It provides shorter turnaround time thaxi the first-fit algorithm for

all traffic ratios. The average turnaround time is reduced by as much as 42% from the

first-fit algorithm at traffic ratio of 1.5 in Figure 6.4(a).

The adaptive-scan performs slightly better than the FO scheme because of the ab

sence of virtual fragmentation. However, the nearly identical performance of the FO

allocation indicates that a good processor allocation scheme does not necessary need

to eliminate all kinds of fragmentation. By properly arranging the allocation of jobs,

fragmentation of the system can be avoided. The adaptive-scan gains its performance

at the price of a higher computational complexity. Under low traffic, the FO and the

www.manaraa.com

97

40

20 35 • Rfst-fit
- • - Adaptive-Scan
-•*- Rxe<>-Orientation

F 30 •
? 1 5 - -

3 25 •

i 2 0 • •

< 10

5

0.4 0.6 0 0.8 1.4 1.6 1 0 0.4 0.6 0.8 1 1.4 1.6
Traffic Ratio Traffic Ratio

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 6.4 Average Turnaround Time of System using Different Allocation
Algorithms.

adaptive-scan performs equally well with negligible difference. At higher traffic ratio,

the adaptive-scan starts to perform slightly better than the fixed-orientation scheme.

This is because in a heavily loaded system, jobs arrive and depart more frequently and

the virtual fragmentation may be more serious. The adaptive-scan solves virtual frag

mentation by checking alternative orientation for submesh allocation and therefore takes

more time to perform. Because the allocation time spent depends on the environment

where the allocation process is executed, it is hard to make a clear comparison. A rough

estimate on the difference between the execution time of both algorithm is obtained. In

a typical simulation run on the HP-9000/715 workstations with very little interference

from other processes, the adaptive-scan takes about 25% more time to complete. The

fixed-orientation allocation is feasible to be used in an integrated processor management

policy because of its low computation demand.

6.4.3 Performance of the Integrated Policy

The integrated processor management scheme is simulated and the results are in Fig

ure 6.5. The lines labeled is the average turnaround time obtained for the adaptive-

scan algorithm using FCFS queue. It is included for comparison because adaptive-scan

www.manaraa.com

98

has the best submesh recognition ability. The integrated scheme delivers better per

formance than the adaptive-scan with a small threshold time. Increasing the threshold

time further reduces the average turnaround time of jobs. Both the BQ scheduling and

the FO allocation contribute to this performance improvement. Because of the less frag

mentation of the FO allocation, more jobs can bypass other jobs in the queue and get

executed.

25 T 20 •

18

1 6 • •
0

1 1 4 - .

•g 12-.

-•-AS
-•-TH=5
—TH=10 .
-X—TH=25
—TH=50
— T H = 1 0 0

IS

§ 1 0 • •

5 4 ••

2 ••

-I

1.6 0.6 0.8

Traffic Rado
0.4 1.4 0.4 0.6 0.8

Traffic Ratio

12 1.4

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 6.5 The Integrated Processor Management Policy Using the
Fixed-Orientation Allocation and Bypass-Queue Scheduling

Larger jobs have the tendency to be passed by other jobs with the BQ schedul

ing. Therefore, we compare the variance of the average turnaround time in Figure 6.6.

Contradictory to our expectation, the variance does not increase when the threshold

time increases. The variance is actually reduced when larger threshold is used. This

is attributed to the fact that a larger threshold time reduces the turnaround time so

efficiently that most of the jobs can be served within a short period of time and thus

results in a small variance. A low variance for the turnaround time is a good property

for the system because most of the jobs can be expected to finish within a certain range

of the average.

Variance shows the square of the absolute distance from an expected value to the

mean of the turnaround time. While a job with high turnaround time causes the variance

www.manaraa.com

99

-•—FCFS
-•-TH=5
—TH=10 .
-*-TH=25

— T H o t O O

0 —~ I I " I 1 1 1 1 1 0 1 1 1 1 1 1 1 1

0 0 ̂ 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Traffic Rad'o Traffic Ratio

(a) Unifomi Job Size Distribution (b) Normal Job Size Distribution

Figure 6.6 Variance of the Avg. Turnaround Time for the Proposed Inte
grated Processor Management Policy.

to be large, a job with smaller turnaround time than the average also causes the variance

to grow. In designing a processor management scheme, the main goal is to minimize the

turnaround time of jobs. Penalizing a job with small turnaround time as the calculation

of variance does hide the small turnaround time incurred by many jobs in the system.

Therefore, we also use the average of the square of the turnaround time (shorthanded

as ASQT) as a metric to compare the integrated policy with different threshold values.

Using ASQT to evaluate the processor management schemes has two advantages.

First, it amplifies the unfair treatment to some jobs. By taking the squares of the

turnaround time of individual tasks, jobs suffered from unfair treatment from the pro

cessor management strategies will have more significant influence on the ASQT. There

fore, an unfair scheme is likely to have high ASQT value. The second advantage of

using ASQT is to avoid penalizing schemes which results in jobs with relatively small

turnaround time. Figure 6.7 illustrates the comparison among the integrated scheme

with different threshold values. The trend shown is basically similar to that of the aver

age turnaround time and the variance of the turnaround time. This observation confirms

that the integrated scheme is not just efficient in reducing the average turnaround time

of jobs in the system, it is also a fair policy.

www.manaraa.com

100

700 I

600
— FCFS
•-TH-S

TH»10
- TH.25

TH-50
—TH-tOO

500

300

200

100

0
0

1400 -

1200 '

1000 -

5 800 -
(fi

* 600 -

400 -

200 -

0 02 0.4 0.6 0.8 12 1.4 1.6 1

Traffic Ratio Tmfflc Ratio

(a) Uniform Job Size Distribution (b) Normal Job Size Distribution

Figure 6.7 ASQT for the Integrated Processor Management Policy.

Figure 6.8 demonstrates the effects of different threshold values on reducing the

average turnaround time for two traffic ratios. A low traffic ratio of 0.5 is used in

Figure 6.8(a) and a slightly high traffic ratio of 1.5 is used in Figure 6.8(b). Both

cases are obtained from the uniform job size distribution, and the results for normal job

size distribution exhibit the same trend. It is observed that the performance improves

at a faster rate with the threshold time up to 25. The improvement is less for higher

threshold values. This is especially true in the low traffic ratio case. As discussed earlier,

the performance improvement of the bypass-queue scheme is obtmned by allowing jobs to

be allocated without being blocked by unallocated job. Number of jobs that can bjT)ass

a job is a function of the threshold time and the system load. Increasing the threshold

time only improves the performance to a certain extent. On the other hand, using a

large threshold time makes large jobs advance slow in the queue. From Figure 6.8, we

conclude that a large threshold time is not necessary and suggest that a value in the

range of twice the mean service time should provide fairly good performance.

www.manaraa.com

101

5.7

5.68

20 • 5.66 •

f= 5.64

2 5.62

S 10

-•
—t

100 0 20 60 80 40 20 60 0 40 80 100

Threshold Value Threstiold Value

(a) Low Load (Traffic Ratio = 0.5) (b) Medium Load (Traffic Ratio = 1.5)

Figure 6.8 Effect of Threshold Time on Reducing the Average Turnaround
Time.

6.5 Discussion

The high complexities associated with existing processor allocation algorithms and

job scheduling strategies makes the integration of the two approaches impractical. In this

chapter, we have proposed a bypass-queue scheduling policy and a fixed-orientation allo

cation algorithm. The bypass-queue scheduling allows some jobs to bypass the blocked

ones for execution and hence better utilizes the processors. The fixed-orientation algo

rithm allocates all jobs in a fixed orientation and thus avoids fragmenting the sv-stem.

Both schemes have very low computational complexity and are therefore suitable for

integration.

The bypass-queue scheduling reduces the average turnaround time for all the allo

cation algorithms we have tested. The fixed-orientation allocation performs better than

the first-fit algorithm and is almost identical to the adaptive-scan algorithm. Trying

all possible locations for allocation may not be necessary for good performance. Prop

erly arranging jobs at allocation time to avoid future fragmentation can also improve the

system performance as exploited in the case of the fixed-orientation allocation. The inte

grated processor management scheme that combines these two schemes result in further

performance improvement. The average turnaround time of the integrated scheme is

www.manaraa.com

102

better than the adaptive-scan with a small threshold time. Choosing a proper threshold

time is important for the integrated scheme. Our results indicate that a large threshold

value is not necessary and suggest that a threshold time in the range of twice the mean

service time should provide fairly good performance.

www.manaraa.com

103

7 JOB MIGRATION APPROACH

7.1 Introduction

In Chapter 2, we have discussed the fragmentation problem associated with the multi

computer systems. Fragmentation prevents the useful computing resources in the system

from being utilized by incoming tasks. Various allocation schemes have been proposed

to tackle different fragmentation problem. Most of the contemporary allocation schemes

have the ability to eliminate the internal and virtual fragmentation completely. The

ability to handle the insufficient resource fragmentation and the physical fragmentation

becomes the defining point of an excellent allocation policy.

Insufficient resource fragmentation is caused by the insufficient computing resources

in the system. Only the RSR scheme discussed in Chapter 3 has the ability to deal

with this problem. It also has the abUity to handle the physical fragmentation. The

adaptive non-contiguous allocation method presented in Chapter 5 is the only other

known method that has the ability to handle the physical fragmentation.

Both the RSR and ANCA schemes are non-conventional allocation schemes. Their

feasibility for practical implementation depends on the characteristics of the job stream

in the system. The effect of using users' input to implement processor allocation schemes

will be discussed in Chapter 8. Another possible solutions for the fragmentation problems

is by performing job migration. A job migration technique was proposed in [53] for the

hypercube systems. Jobs are constantly migrated toward one end of the hypercube so

that the available processors in the system are less fragmented. It has been proven to

www.manaraa.com

104

be an effective way to manage the processors.

To our knowledge, no such schemes have been proposed for the mesh-connected

multicomputers. In this chapter, we proposed a job migration approach for the mesh

systems. The rest of this chapter discusses the proposed job migration algorithm and

show the performance results of the proposed scheme.

7.2 Job Migration Process

The difficulty of performing job migration to improve the performance of multicom

puter system in mesh lies in the irregularity of the sizes of jobs. In the hypercube-based

system, the job sizes are distributed as subcubes. Any two subcubes of the same size can

be put together and form a larger subcube and all nodes in the combined subcube will

be fully utilized. Because of the regularity in subcube sizes, migrating jobs to one end

of the system reduces the fragmentation and thus improve the system performance. In

the mesh-based system, jobs come in the form of submeshes. It is more difi&cult to find

two submeshes of the same size. Due to the high variances in submesh sizes, migrating a

submesh to the side of another submesh does not necessarily reduces the fragmentation.

Another problem associated with job size irregularity is the migratability of jobs. For

hypercube systems, because jobs are all in the form of subcubes, it is easier to find an

available subcube as the destination for the migrated job. For mesh system, it is more

diflScult to find a destination submesh for the migrating processes.

To overcome the problem of job size irregularity, we use the following heuristics

to select a candidate submesh for job migration. First, a job which has an almost

square shape is more likely to find a destination for migration. This is based on the

observation made in the study of the fixed-orientation allocation scheme in Chapter 6.

Jobs which have irregular sizes are more likely to cause the system fragmented and

therefore reallocation of them should be avoided. Second, a small job is more likely

www.manaraa.com

105

to be migratable. This is a straightforward observation from our previous study of

allocation schemes.

The proposed job migration scheme works as follows. The information about most

recently allocated jobs are maintained in a candidate pool. Job migration can be done

at an failed allocation attempt or the departure of an existing job. When an allocation

failed, a candidate for migration is selected from the candidate pool and the possible

new location of this job is determined using the existing allocation algorithms. By

carefully arranging the allocation algorithm, the new location of the job can be made

to be closer to one comer of the system. The job that failed to be allocated will be

reevaluated for the allocation in the system under the assumption that the candidate

has been moved to the new location. The candidate is migrated only when the migration

enables the allocation of the previously unallocated job. This approach is referred to as

the arrival approach. Job migration can also be done at the departure of an existing

job. When a job terminates and leaves the system, it release all the processors it holds.

The newly released nodes could be surrounded by other executing jobs and therefore

creates a fragmented hole of processors in the system. An aggressive approach would

be to migrate jobs when the number of free processors in the system changes. In the

case of migration on job departure, the same candidate pool is used for the selection

of migration candidates. Upon completion of a job, the system selects a job from the

candidate pool and check if it can be migrated. If a new location can be found, the

candidate job is migrated. Again, the new location of the job is so decided that it is

closer to one of the four corners of the mesh. It can therefore be imagined as having

the allocated jobs drifting to one side of the system upon the completion of jobs. This

approach is referred to as the departure approach. An even more aggressive approach

is to perform job migration at both the completion of a job and a failed allocation

attempt which is referred to as the aggressive approach in the rest of this chapter. To

minimize the cost of job migration, we only migrate a job every time the migration is

www.manaraa.com

106

initiated. The migration pool is used to simplify the candidate selection process. To

avoid migrating a job multiple times and causes its execution to be penalized multiple

times, any job can only be migrated once.

Figure 7.1 illustrates how the jobs are migrated. In this example, four jobs are

executed in the mesh as shown in Figure 7.1.(a). Assuming a candidate pool size of two

jobs and the two jobs in the candidate pool are labeled as job A and B. When job 1

leaves the system, job B is selected as the migration candidate because of its size and

shapes meets our heuristics for candidate selection. The allocation algorithm then tries

to find a new location for job B as close to the lower-left comer as possible. As a result,

the new allocation of the three remaining jobs ends up as illustrated in Figure 7.1.(b). If

an on-demand migration approaches is used, job B \vill still be selected as the candidate.

The allocator checks if the allocation of the incoming task is possible assuming job B

has been moved toward the lower-left comer. If the new job can be allocated by moving

job B, job B is migrated and the new job is allocated. Otherwise, job B remains intact

and the new job has to wait until the departure of an executing job for allocation.

(a) System Layout before Migration (b) System Layout after Migration

Figure 7.1 Example of an Aggressive Job Migration Approach.

www.manaraa.com

107

7.3 Performance of the Job Migration Schemes

The performance of the job migration scheme is evaluated in this section. Three

migration approaches, arrival, departure and aggressive migration are evaluated. The

cost of migration is very difficult to estimate. It depends on the size of the job to be

migrated, the speed of interconnection network, and the ability of the system to handle

the suspension and restart of the migrated process.

The speed of the interconnection network used in most of the contemporary' machines

are typically around tens or hundreds of megabits per second. This means the actual

migration process of a job may tedse only a few seconds or even less even for a large job.

Compared to the run time of typical parallel application on multicomputer systems, this

cost is insignificant. However, migrating a job does require the support from the system.

For example, the operating system has to identify the new location and move the contents

of the register file and the memory pages to the new processor. It is also important to

maJce sure all the messages generated by a job which is about to be migrated reach their

destination before the migration process takes place. Otherwise, a stranded message

may never reach its destination and cause the job to wait for it indefinitely. It is also

possible for a message from a migrated job to reach a incorrect destination processor

after that processor has been assign to ajiother job and causes the execution of the

new process to fail. The solution to these problems is by inserting checkpoints in the

programs. Checkpoints can be inserted manually by the programmer or automatically

by the system. When a job is migrated, we can either resume its execution on its

new location from the most recent checkpoints or wait till the next checkpoint before

migrating it. Waiting for the next checkpoint may not be useful in the system we are

considering because the lack of information on job execution time also implies lack of

information on the time to next checkpoint. By going back to the previous checkpoint,

some amount of computation is lost and has to be taken into account when designing a

www.manaraa.com

108

Checkpoints: tl t2 i3 14 t5 t6

mignitioa point

Figure 7.2 Checkpoints and the Job Execution.

job migration scheme.

In our performance study, we assume the system is capable of restarting a job at

the most recent checkpoint. Figure 7.2 shows the execution of a job which has six

checkpoints. The shaded area represents the completed execution. At the time of

migration, execution has passed checkpoints t4 and has yet to reach point t5. The

execution has to resume from point t4 and thus results in a migration penalty of losing

the execution between point t4 and the migration point. We studied several different

cost factors of job migration based on the number of checkpoints in a job. The cost

of transferring the code and data from original location to the newly allocated nodes is

ignored. Once a job is migrated, its termination time is delayed by its relative position

to the previous checkpoint.

7.3.1 Performance of Individual Migration Approaches

The first set of results illustrates the difference between different migration ap

proaches. The two performance metrics shown are the average turnaround time and

the average of the square of the turnaround time. The average turnaround time is a

direct measure to show the system performance from the user's perspective. It indicates

the time that a user has to wait for his or her jobs to complete after the submission.

Lower average turnaround time also indicates a higher system throughput. The average

of the square of the turnaround time, shorthanded as ASQT is an indication of the fair

ness of a scheme. Due to the differences of the processor management schemes, some jobs

may be treated unfairly in order to achieve the overall system performance. When a job

www.manaraa.com

109

is treated unfairly, its turnaround time is relatively larger than most other jobs. Taking

the average of the square of turnaround time of all jobs amplifies the high turnaround

time incurred by jobs treated unfairly. A good processor management scheme should

result in low average turnaround time while a fair system should have low ASQT.

Figures 7.3, 7.4 and 7.5 are the results obtained when migration is applied at job

allocation, job departure and both job allocation and departure for the uniform job size

distribution case. Each line in the figures represents a different number of checkpoints.

The line labeled CP = 0 is the case when the system can migrate a job at any instant

without losing any execution and therefore does not require any checkpoints. Similar

results are shown in Figures 7.6, 7.7 and 7.8 for the normal job size distribution. The

size of the candidate pool used in these simulations are six.

70 -
o
F 60 -
{=

•o 50 -
c
o 40 -
CO
c k_
3 30 -
H
o 2 0 -

< 10 •

0 -

Cpsio

Adaptive-scan

0^ 1

Traffic Ratio

1^

a (O <

10000000

1000000 —CP=0
— CP=5

100000 — CP=10
—CP=20

10000 —CP=SO
—Adaptive-scan

1000

100

10 +-

0 0.5 1 1.5

Traffic Ratfo

(a) Avg. Turnaround Time (b) ASQT

Figure 7.3 Migration at Job Allocation (Uniform Jobs).

It is interesting to see the on-demajid approach of performing job migration upon an

allocation failure does not provide better performance than the adaptive-scan allocation.

In many cases, it provides longer average turnaround time than the adaptive-scan allo

cation. This can be explained as the inefficiency of the on-demand approach. Because

we only migrate one job at a time, the on-demand approach does not guarantee a less

fragmented system. With the cost of restarting execution from previous checkpoints, the

www.manaraa.com

110

I 35

20

a 10

 ̂ 5

/ / !

10000000 -

— CP=0 u j 1000000 - — CP=Q
- -̂ Cp=5 \j U — CP=5

-C ÎO /// 100000 - - CP=10
— CP=20 j // — CP=20

- — CP=50 jf/ g 10000 - — CP=50
— Adaptive-scan < — Adaptive-scan;

1000 -

100 -

 ̂ 10
0£ 15

Traffic Ratio

05 1 15

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.4 Migration at Job Departure (Uniform Jobs)

60

® 50 -
p
•o 40 •

S 30 -g
H 20 -
a
< 10 -

Adapuve-scan

0.5 1 15

Traffic Ratio

10000000 -

1000000 -

CP«10 100000

10000

1000 -

100 -

1 15

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.5 Aggressive Migration at Both Job Allocation and Departure
(Uniform Jobs).

www.manaraa.com

I l l

0.5 1

Traffic Ratio

1.5

80 - 10000000 -

• 70 -
E _ —CP=0 ! 1000000 -
1 6 0 - - - C p =s A
c 50 • —cp=io /A 100000 -
9
o ^CP=20 ///
s 40 - —CP=50 Ig g 10000 -

i 30 - —Adai)tive.scan M <

1000 -
a 20 • J
• ' l O - 100 -

0 — 10 —

-CP=0
••CP=5
~CP=10
-CP=20
-CP=SO
-Adaptjve-scan

0.5 1 1.5

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.6 Migration at Job Allocation (Normal Jobs).

40 -

o 35 •
b
p 30 -
T3
C 25 • 3 25 •

w 20 -
C
3 15 -
K.
» 10 -
*

5 -

AdapDve-scan

O
CO
<

0.S 1 1.5

Traffic itatio

1000000 -

100000 -

10000 -

1000 -

— CP=0
CP=5

-CP=10
-̂ CP=20
— CP=50
-Adaptive-scan

100000 -

10000 -

1000 -

100 -

10

05 1 1.5

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.7 Migration at Job Departure (Normal Jobs).

www.manaraa.com

112

100 -

90 -

80 -

70 -

60 -

50 -

40 -

30 -

20 -

10 -

0 —

— CP=0
- CpsS

- CfxIO'
-^CP=20)
-̂ CP=SO'
— AS

0.5 1

Traffic Ratio

1.5

10000000 -

CP=Q
CP=5
CP=10
CP=20
CP=50
Adaptive-scan

1000000

100000

10000 -

1000 -

100 -

1 15
Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.8 Aggressive Migration at Both Job Allocation and Departure
(Normal Jobs).

on-demand approach fails to deliver a better performance. Both the departure and ag

gressive approaches outperforms the adaptive-scan provided the number of checkpoints

in the job is sufficient. This is due to the fact that by migrating jobs aggressively to

ward one comer of the system, fragmentation is reduced and hence the queuing delay

is reduced. Having little checkpoints in a program means a high restarting cost for

migrated jobs and therefore cause the job migration approach to produce high average

turnaround time. It is observed that if the number of checkpoints in a job is more

than five, the average turnaround time of jobs benefits from performing departure or

aggressive migration.

The average of the square of the turnaround time is a metric which indicates the

fairness of the processor management schemes. If a job is treated unfairly, it will incur

high turnaround time and therefore cause the average of the square of the turnaround

time for the system to be high. In our results, when the number of checkpoints is equal

to two or five, this value is high indicating that some jobs are treated unfairly because

of the migration cost. With more checkpoints in a job, the value is lower than the

adaptive-scan indicating that jobs are treated fairly and most jobs experience smaller

www.manaraa.com

113

turnaround time.

7.3.2 Comparison Among Migration Approaches

The three job migration approaches are compared in Figures 7.9 and 7.10. The results

indicate that the departure approach has the best performance among the three. The

arrival approach is the worst scheme. Both the uniform and normal job size distribution

confirm this observation. The arrival approach migrates jobs upon allocation failure and

perform the migration only when the unallocated job can be allocated after migration.

The available processors in the system when allocation failure are limited and therefore

limit the flexibility of job migration. To reduce the fragmentation effectively, jobs have

to be migrated to one end of the system as much as possible. Upon job departure, the

number of available processors are more and giving more flexibility to migrate a job.

The aggressive approach performs between the departure and arrival approach. This is

because some of the jobs in the candidate pool are migrated at the allocation failure of

other jobs and thus negate the effect of migrating at departure.

10000

Adaplive-scan
arrival
departure
both

Adapdve-scan:
arrival
departure
bom

Traffic Ratio Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.9 Comparison among Migration Approaches (Uniform Jobs).

www.manaraa.com

114

50 -

45 -

I 40 -
P 35 -•a
i 30 -

§ 2 5 -

1 20 -
^15 -
< 10 •

5 -

0 —

10000

-Adapfive-̂ can
-antval
depaiture

-twih

0.5 1

Traffic Ratio

1.5

a 09
<

1000

100

10

-Adaptive-scan
-anival
• departure
-botti

0.5 1.5

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.10 Comparison among Migration Approaches (Uniform Jobs).

7.3.3 Effect of Candidate Pool Size

AH the results shown in previous sections are obtained with a candidate pool of six

jobs. A larger pool size is likely to provide a better candidate for migration and may

perform better. Different candidate pool size are compared in Figures 7.11 and 7.12.

Based on the observation from the previous section, only the departure approach is

compared. The difference between a pool size of six and a pool size of twelve are very

limited, contractdicting our expectation. Both lines overlap with one another. This

is true for both job size distributions and the two metrics compared. Using a larger

candidate pool also increase complexity of the candidate selection process. Even though

the complexity of candidate selection process is low, the nearly identical performance

does not suggest the use of a larger candidate pool.

7.4 Discussion

This chapter discusses an alternative processor management scheme, the job migra

tion approach. Three different migration approaches are evaluated and the effect of

the size of the candidate pool is also studied. Our simulations indicate that migration

www.manaraa.com

115

50

45 -

40 E 40
l-
•o 35
c
3 30 •
s 25
g
3 20 -
(-

I."? -
a >
< 10

5

0 ̂
0

10000

05 1
Traffic Ratio

15

a m <

1000

100

10

Adapove-scan
pooIsS
poebta

05 1

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.11 Effect of Candidate Pool Size (Uniform Jobs)

50 -
45 -

I 40 -
P 35 -

I 30 -
§ 25-

I so
i l s -
< 10 •

5 -

0 —

0

10000

-Adaptive-scan
-anival
departure

-both a
01
<

1000

100

10
05 1

Traffic Ratio

15

Adaptive-scan
arrival
departure
botii

05

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 7.12 Effect of Candidate Pool Size (Uniform Jobs).

www.manaraa.com

116

upon completion of a job provides the best performance. The difference among the

job migration approaches is the flexibility for selecting a new location for the migrating

jobs at the time migration is performed. Migrating upon the completion of a job allows

the migration process to take advantage of the free processors released by the depar

ture job. Increasing the size of the candidate pool does not further improve the system

performance.

Another factor that has to be taken into consideration when implementing the job

migration approach is the cost of migration. In our simulation, the cost for transferring

the data and program is ignored. This may not be the case in a real implementation

and has to be carefully considered. Also the cost of restarting the job from a previous

checkpoint cannot be ignored as seen in our results. The support of checkpointing from

hardware and/or operating system has to be implemented in order to take advantage of

the job migration approach.

www.manaraa.com

117

8 USING USER DIRECTIVES FOR PROCESSOR

ALLOCATION

8.1 Introduction

In previous chapters, we have discussed various processor management techniques

in the multicomputer systems. Two techniques, the RSR and the ANCA schemes have

shown promising performance improvement comparing to the other techniques. How

ever, the potential problem associated with the penalty of using them limits the practical

use of these two novel approaches. The penalty involved when using the RSR scheme

is the extended execution time of jobs being allocated on size-reduced submeshes. The

penalty involved in the ANCA scheme is the increased communication latency of jobs

being allocated non-contiguously. Both these penalty can be reduced if user directives

can be incorporated into the design of the processor management policies.

In an environment where not all jobs can be allocated to less processors or to non

contiguous nodes, the penalty for perfonning RSR or ANCA allocation may be too

high and causes poor overall system performance. In such an environment, conventional

allocations which conservatively allocate aU jobs to contiguous processors according to

the job request may be used to avoid the urmecessary penalty associated with the RSR

or ANCA schemes. If a job is known to require very few interprocessor communication,

the penalty incurred by allocating this job to non-contiguous processor is less likely to

affect the overall execution time of it. The performance of the whole system may actually

benefit without paving much of a penalty for doing non-contiguous allocations of this

www.manaraa.com

118

kind of jobs. Similarly, if the memory requirement of a job is not tight, then it is unlikely

to exhaust the available memory in each processing unit when allocated using RSR. The

system-wide performance can again benefit from this information. On the other hand,

if a communication-intensive job gets allocated non-contiguously or a memory-bounded

job's size gets reduced, the penalty may be higher than what we expected. Therefore, if

information about certain characteristics of a job can be used to assist the allocation, a

higher performance of the system can be expected. In this chapter, we discuss the effect

of having user specify the characteristics of jobs for the allocation process.

8.2 User Directives for Processor Allocation

Conventional allocation schemes have reached a performance bottleneck. The per

formance difference among various allocation algorithms are minimal because of the

size and shape constraints imposed by the conventional allocation algorithms. Many

researchers have therefore resorted to job scheduling for efficient processor management.

This chapter discusses a new processor allocation schemes which combines three very

different allocation approaches with the assistance of user directives to take advantages

of each allocation approaches.

The concept of size-reduction has been used in the RSR allocation. Non-contiguous

allocation has also been implemented in the ANCA scheme. Both size-reduction and

non-contiguous allocation are radical changes from the conventional processor allocation

approaches and have been proven to provide significant performance improvement. An

ideal processor management policy would have included these two novel approaches.

However, these two approaches are subject to some performance limitations.

When size-reduction is applied to a job, the amount of computation executed on

each processor is increased due to the smaller number of processors allocated to the job.

This increases the execution time of the job. Another issue needs to be addressed for

www.manaraa.com

119

size-reduction schemes is the memory requirement. The data required in the execution

of a job is redistributed among a smaller number of processors if size-reduction has been

applied to the job. A potential problem can happen if the memory required for running

the job exceeds the memory threshold of the processors. This could cause the system

to fail or cause the job to suffer from memory swapping and further increases the job

execution time. Therefore, memory requirement is an important factor to consider when

implementing the size-reduction schemes.

The performance limitations associated with the non-contiguous allocation algo

rithms is the potential increase of the communication latency experienced by jobs being

allocated non-contiguously. Parallel applications and algorithms are optimized to min

imize the number of communication steps and the distance of communication path.

Non-contiguous allocation violates the optimized communication path and may cause

the communication latency of jobs to increase. The execution time of the job is therefore

increased with the increasing communication latency. Studies in [55] indicated that sub

stantial increase of the job execution time can be observed if non-contiguous allocation

is used. The increase of job execution time is especially pronounced for communication

intensive jobs.

The penalty of implementing size-reduction or non-contiguous allocation can be

avoided if certain characteristics of the job requests is known a prior. Two attributes of

jobs' characteristics, communication intensity eind memory requirement, are particularly

useful in implementing processor management schemes. K a job is known to be commu

nication intensive, non-contiguous allocation has to be avoided. On the other hand, if

the communication demand of a job is known to be low, the system can take advantage

of this fact and allocates it non-contiguously to increase the processor utilization. If a job

is known to be memory-bounded, size-reduction should not be taken. If a job requires

little memory or if its turnaround time is not a critical consideration, size-reduction may

increase the possibility of its allocation and improve the overall system performance.

www.manaraa.com

120

In this chapter we analyze the use of user directives as an assistance to processor

allocation. Instead of using a single allocation scheme for all jobs, a combination of

three different allocation schemes are used based on the attributes of the job being

allocated. The three allocation schemes considered are the conventional algorithm, the

RSR scheme, and the ANCA policy. The proposed allocation scheme is referred to

as hybrid allocation. The conventional algorithm allocates jobs to a set of contiguous

processors based on the requests. The RSR scheme allocates jobs to a size-reduced

submesh when the submesh originally requested cannot be located in the system. The

ANCA policy adaptively allocates jobs non-contiguously when fragmentation prevents

jobs from being allocated. Both RSR and ANCA schemes allocates jobs to requested

submesh whenever possible so that the penalty from size-reduction or non-contiguous

allocation is minimized. Table 8.1 lists the combinations of the job attributes and the

possible allocations that these combinations implied. With the assistance of the user

directives, it is expected that the system can take advantages of each allocation scheme.

For jobs which are commu.nication intensive and memory bounded, the conventional

allocation algorithm is used. Jobs which has more relaxed memory requirement can be

considered for the RSR allocation. Non-communication-intensive jobs can be considered

for the ANCA scheme. Jobs that are neither communication-intensive nor memory-

bounded can be considered for all allocations.

Table 8.1 Job Attributes and Possible Actions

Communication-Intensive Non-Communication-Intensive
Memory-Bounded Conventional only ANCA
Non-Memory-Bounded Conventional or RSR ANCA or RSR

The hybrid allocation scheme using user directives is described as following. Upon

submission of a job into the system, users can specify the two attributes for the jobs,

whether it is memory-bounded or communication-intensive by setting the associated

flags. Upon the allocation of a task, the flags are checked and the allocation scheme

www.manaraa.com

121

is chosen based on the attributes of the job. If a job can be allocated by both RSR

and ANCA scheme, RSR is used because of its ability to fit more jobs into the system.

Setting of the flags requires the knowledge about the job characteristics. It is assumed

that the users of multicomputer systems are experienced scientists and therefore should

be able to determine the two flags for their submissions. However, it is possible for the

users to not know the characteristics of their jobs or to provide false information. By

default, a job is assumed to be memory-bounded and communication-intensive unless

otherwise noticed by the user. This assumption is to avoid false treatment of a job and

hence bad performance.

8.3 Performance of Hybrid Allocation Using User Directives

The processor allocation scheme using user directives is evaluated with simulation.

The default simulation parameters such as system size and job size distribution are the

same as the one described in Tables 3.1 and 3.2. The results are the average of 10,000

jobs over multiple repetitions. In each iteration, the first 1,000 jobs are excluded from

the data collection to avoid premature data.

We simulate the allocation with user directives using two independent variables for

the characteristics of a job. The variable cm is the ratio of jobs that is communication-

intensive. The variable mm is the ratio of jobs that is memory-intensive. By varying the

these two variables, we expect to see the system's ability to handle different mix of jobs.

With the assistance of user directives, it is safe to assume that the jobs get allocated using

ANCA scheme or RSR scheme are not communication-intensive or memory-intensive.

Therefore, for the ANCA scheme a cost factor of 5% is assumed for jobs allocated non-

contiguously. The execution time of jobs allocated non-contiguously are assumed to

be increased by 5% to reflect the possible increase in communication latency. For the

jobs get allocated non-contiguously, their execution time is assumed to be doubled for

www.manaraa.com

122

every size-reductions they incurred as assumed in Chapter 3. Knowing a job is not

memory-intensive ensures its feasibility for size-reduction and memory thrashing is not

likely to occur. However, the amount of computation in such a job remains about the

same so its execution time is still assumed to increase exponentially with the number

of size-reductions it incurred. As indicated in Chapter 3, a size-reduction of two to four

is eflfective enough to improve the system performance dramatically, we use the RSR-2

in our evaluation. As of ANCA, because of the low cost associated with it when user

directives are used, we use ANCA-10 allocation.

In Figures 8.1 to 8.3, we show the two performance metrics for memory-intensive

ratio at 0.3, 0.6 and 0.9 for the normally distributed jobs. Higher values of cm result in

higher values in both metrics measured. This is because the lack of flexibility in choosing

jobs to perform ANCA or RSR allocation. It is observed that in most cases, using user

directives does provide better performance than using the conventional adaptive-scan

allocation. The possibility to take advantages of the ANCA and RSR scheme proves

to be effective. However, when mm = 0.6 and cm = 0.9, using user directives actually

resulted in worse average turnaround time and average of the square of the turnaround

time.

80 -

70 -
o
F 60 -
P
•o e 50 -
g 40 -
E

30 •

i 20 -

10 -

0 -

-Adaptive.scan
>'Cm=0.3
-cm=0.6
-em=0.9

05 1 15

Trifflc Ratio

25

100000000

10000000

1000000

100000

10000

1000

100 •

10

— Adaptive-scan
-•cm=0.3
- cmsO.S

-~Cfn=0.9

05 1 15

Tratnc Ratio

25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.1 Using User Directives (Normal Jobs, mm = 0.3).

www.manaraa.com

123

80 -

70 -

1 60 -
P
? 50 -

i « -
E
S 30 -
a
i 20 -

10 -

0 —

0

cmsO.3
011=0.6
cmsO.9

0£ 1 13
Traffic Ratio

2.5

100000000

10000000 -

1000000

100000

10000

1000

100

10

—Adaptive-scan
—cn)=0.3
- cm=0.6
—cm=0.9

0.5 1 15
Traffic Ratio

2.5

(a) Avg. Turnaround Time (b) ASQT

Figure 8.2 Using User Directives (Normal Jobs, mm = 0.6).

80 -

70 -

E 60 -p
1 50 -

i 40 -
B
? 30 -
di
i 20 -

10 -

0 -

Adaptive-scan
cmsO.3
cmsO.e
cmsO.9

05 1 15
Traffic Ratio

25

100000000

10000000 -

1000000

100000

10000

1000

100

10

—Adaptive-scan
— cm=0.3
• ctnsO.6
—cni=0.9

05 1 15
Traffic Ratio

25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.3 Using User Directives (Normal Jobs, mm = 0.9).

www.manaraa.com

124

The results for the uniformly distributed jobs are shown In Figures 8.4 to 8.6. Using

user directives fails to improve the system performances in many cases. In most cases,

only when the ratio of communication-intensive jobs is 0.3, the allocation using user

directives can take advantages of the two novel schemes. When the ratio of memory-

intensive jobs equals to 60% (Figure 8.5), the proposed approach are particularly bad

compared to the adaptive-scan allocation. The observation made from these simulation

is interesting in the sense that it contradicts the expectation that when user directives are

incorporated into the allocation, the system can take advantage of the RSR and ANCA

schemes and reduce the average turnaround time of jobs. Another problem associated

with the processor allocation using the user directives is the unfairness treatment to the

jobs. As measured in the simulations, using user directives often results in high ASQT

values indicating that some of the jobs indicating considerably higher turnaround time

than the others. This is a character of the system which is not desired.

80

70

60

5 50 •

I 40

 ̂30

f 20 •

10

0
0 1 2 2.5

100000000

10000000

1000000

100000 K a (O < 10000

1000

100

0.5 0 2 1

Traffic Ratfo Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 8.4 Using User Directives (Uniform Jobs, mm = 0.3).

The reason for this performance drawback of the hybrid allocation is a combination

of the high cost associated with the RSR scheme and the lack of flexibility in choosing

jobs for performing size-reductions. In the simulation of the RSR scheme in Chapter 3,

the allocator has complete freedom in performing size reduction when fragmentation

www.manaraa.com

125

80

70

60 •

50 •

40 •

30 -

20 -

10

0 •

cmsO.a
cmsO.6
cmssO.9

03 1 13
Traffic Ratio

23

100000000

10000000

1000000

100000

10000

1000

100

10

^Adaptive-scan
-•cm=0.3
- citisO.6
-~cm=0.9

0.5 1 1.5

Traffic Rado

(a) Avg. Turnaround Time (b) ASQT

Figure 8.5 Using User Directives (Uniform Jobs, mm = 0.6)

80

70

60

50

40

30

20
10

0
05

—Adaptive-scan
—cm=0.3
- cmsO.e
—cni=0.9

1 1.5

Traffic Ratio

2.S

100000000

10000000

1000000

100000

10000

1000

100

10

—Adaptive-scan
—em=0.3
-011=0.6
-~cn>=0.9

0.5 1 1.5

Traffic Ratio

(a) Avg. Turnaround Time (b) ASQT

Figure 8.6 Using User Directives (Uniform Jobs, mm = 0.9).

www.manaraa.com

126

prevents a job from being allocated. The blocking effect of the queue is therefore alle

viated when the jobs can be allocated to smaller size submesh. Without the freedom

of performing size-reduction on every job, the high cost associated with size-reduction

becomes a severe factor in the queuing latency. For example, in Figure 8.7, a job is

allocated in the center of the mesh with size-reduction. Due to the size-reduction, its

execution time is considerably higher than its original execution time. If the next job

in the queue which requires a 4x4 submesh for its execution is labeled as memory and

communication-intensive, RSR or ANCA cannot be used and it has to be allocated using

conventional allocation scheme. The 4x4 job will then wait for the departure of the jobs

in center of the system before it can starts execution. Consequently all jobs after it have

to be queued and cause the poor performance of the system.

A combination of a size-reduced job following by a blocked job which cannot be

allocated with RSR or ANCA cause the system to produce high average turnaround

time. Large jobs are more likely to be blocked or to go through size-reduction. In the

normal distribution case, job sizes are more concentrated to about half of the system

size in each dimension. For the uniform distribution, job sizes are more diversified over

the possible range and hence have more large jobs in the system. It is the reason that

2x5

2x2
4x4

Figure 8.7 Blocking Caused by a Job Allocated Non-Contiguously.

www.manaraa.com

127

the uniformly distributed case has worse performance than adaptive-scan when the user

directives are used. The jobs allocated with size-reduction have to be carefully placed in

the system so that they do not create fragmentation and cause blocking of other jobs.

8.4 Modified RSR

The RSR allocation is shown to have performance concerns in an environment where

not all jobs can go through size-reduction. As the performance study in the last section

indicates, due to the lack of freedom on performing size-reduction on every job possible

and the location of jobs allocated non-contiguously, serious blocking may occur. The

original RSR algorithm does not have this problem because all jobs are assumed to be

non-memory-intensive and can therefore avoid the blocking by performing size-reduction.

To solve the problem of RSR allocation in an environment where user directives are used,

we propose a modified RSR algorithm.

The proposed modification of the RSR scheme takes advantage of size-reduction while

avoids the blocking problem. The blocking problem for the scheme used in Section 8.2 is

mainly caused by the long execution time of the size-reduced jobs. If such jobs are placed

in the center of the mesh, many jobs will be blocked. This problem can be solved if the

jobs allocated with size-reduction are carefully placed along the periphery of the mesh

so that they do not block other jobs. To further reduce the possibility for a size-reduced

job to cause fragmentation in the system, the decision on the dimension to fold is also

modified. The original RSR scheme folds a job in the larger dimension when folding is

necessary. The rationale behind this decision is to make the allocated submesh more

regular (closer to square) so that the job can be easier allocated and once it departs

the system, the space it lefts in the system is more likely to be allocated to other jobs.

Figure 8.8 illustrates two folding decisions and their impact on the fragmentation of the

system. Suppose a job requiring 6x4 submesh is folded twice and placed at the bottom-

www.manaraa.com

128

left corner of the mesh. Using the original RSR, a 3x4 submesh is allocated to this job as

in Figure 8.8.(a). Another possible way of folding is to always fold a job along the same

dimension as shown in Figure 8.8. (b). In this case, a 6x2 submesh will be allocated and

the system is able to accommodate larger jobs compared to the case when 3x4 submesh

is allocated. It is also important to notice that the orientation of the allocated submesh

has to be aligned with the periphery so that fragmentation of the system is avoided.

(a) Folding in alternative sides (b) Folding along the same side

Figure 8.8 Comparison of the Folding Decisions.

The modified RSR is therefore described as follows. Upon allocation of a job, its

original submesh requirement v^ill be examined for allocation. If the allocation failed,

the larger dimension of it will be selected as the dimension to fold. The folded submesh

is checked along the periphery of the mesh for the possible allocation. Because the orien

tation of the submesh has to align with the periphery of the mesh, only one orientation

of the submesh has to be checked along each edge of the mesh. If the allocation again

failed, the submesh is folded in the same dimension and the checking continues until the

preset limit of allowed size-reduction is reached.

www.manaraa.com

129

8.5 Performance of Processor Allocation Using Modified RSR

with User Directives

The simulation results for processor allocation using modified RSR with user direc

tives are shown in Figures 8.9 to 8.14. Significant reduction on average turnaround

time is observed in all cases but one. The only exception is with uniform distribution,

mm = 0.6 and cm = 0.9. In this case, the proposed processor allocation using modified

RSR performs almost identical to the adaptive-scan allocation. Its average turnaround

time is less than 0.5% more than the adaptive-scan. Comparing to the performance im

provement in other cases, this difference is very insignificant. In addition, the percentage

of jobs which are memory-intensive is likely to be higher than the percentage of jobs that

are communication-intensive. This is due to the fact that memory-intensive jobs have

more local data to work on in each processor and might not need to communicate ver*

often. Therefore, it is unlikely for this combination of jobs to be seen in a real system.

The ASQT values for the processor allocation using modified RSR with user directives

are almost always lower than the RSR scheme. In some cases when one of the two job

characteristic variables mm and cm is equal to 0.9, the ASQT measured is slightly

higher than the adaptive-scan scheme. This is because some of the jobs experience

higher turnaround time due to the size-reduction. However the difference is always

very small compared to the difference between adaptive-scan and the cases when other

combination of jobs are simulated.

8.6 Discussion

This chapter studies the effect of user directives to processor allocation in multi

computer systems. Due to the high cost of performing size-reduction or non-contiguous

allocation, user directives are useful in reducing the penalty caused by performing these

www.manaraa.com

130

80 -

70 •
9
fr 60 -
P
•a c 50 -
e

40 -
E
3 30 -

>
< 20 -

10 -

0 -

cmsO-S
cmsO.e

05 1 15

Traffle Ratio

25

100000000

10000000

1000000

100000

10000

1000

100

10

—Adapttve-scan
—cin=0.3
- cfnsO.6
-^cm=0.9

05 1 15

Traffic Ratio

25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.9 Using User Directives with Modified RSR (Normal Jobs,
mm = 0.3).

80 -

70 •
•
F 60 -
P
•a c SO -
o

40 -
E
H- 30 •
a
i a) -

10 -

0 -

Adapnve-scan
aifeiO.3
cntsO.e
cinsiO.9

05 1 15

Traffic Ratio

2 25

100000000

10000000

1000000

100000

10000 •

1000

100

10

—Adaptive-scan
— cni=0.3
^cin=0.6
—cm=05

05 15 25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.10 Using User Directives with Modified RSR (Normal Jobs,
mm = 0.6).

www.manaraa.com

131

80 -

70 -
o
F 60 -
P
o e 50 -
e

40 -
E

30 -
a»

< 20 -

10 -

0 -

-Adaptive-6can
-cm=0.3

cmsO.6
-cni=0.9

100000000

05 1 15

Traffic Ratio
25

10000000 i

a
to
<

1000000

100000

10000

1000

100

10

—Adaptive-scan I
—cm=0.3 I
- cm=0.6 i

—citi=0.9

05 1

Trattic
15

Ratio
25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.11 Using User Directives with Modified RSR (Normal Jobs,
mm = 0.9).

80

70

1 60 p
1 so
a

I 40

3 30

f 20

10

0

Adaptive-scan
cm=0.3
cm=0.6
cmsO.9

05 1 15

Traffic Ratio
25

100000000

10000000

1000000

100000

10000

1000 -

100

10

—Adaptive-scan
—cnn=0.3
~cm=0.6
—cm=0.9

05 1 15

Traffic Ratio
25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.12 Using User Directives with Modified RSR (Uniform Jobs,
mm = 0.3).

www.manaraa.com

132

80
70

1 60
P
1 50 •
a

I 40 -

3 30

f 20
10

0

cm=0.3
cmsO.6
oni=0.9

OJS 1 15
Traffic Ratio

25

100000000

10000000

1000000

100000

10000

1000

100

10

—AdapBve-scan
-^cm=0.3
- cni=0.6
» 011=0.9

0.5 1 15

Traffic Ratio

2 25

(a) Avg. Turnaround Time (b) ASQT vs. Traffic

Figure 8.13 Using User Directives with Modified RSR (Uniform Jobs,
mm = 0.6).

80 1

70

1 60
P
1 50
3

I 40

 ̂ 30 J

f 20

10

0
05

Adapttve-scan
cinsO.3

1 15

Traffic Ratio

25

100000000

10000000

1COOOOO

O
iO
<

100000

10000

1000

100

10

•Adaptive-scan
-•cm=0.3
—cm=0.6

—cm=0.9

05 1 15

Traffic Ratio

2 25

(a) Avg. Turnaround Time (b) ASQT

Figure 8.14 Using User Directives with Modified RSR (Uniform Jobs,
mm = 0.9).

www.manaraa.com

133

allocation alternatives on unfit jobs. Intuitively, the performance of the system is ex

pected to improve if the user directives can be used to assist processor allocation. How

ever, contradictory to expectation, using user directives for processor allocation does

not always guarantee better system performance. In many cases, combining the conven

tional allocation along with RSR and .Aj>fCA even produces higher average turnaround

time than using the conventional allocation algorithm alone.

The reason for the poor performance of the hybrid allocation to fail is a combination

of the high cost associated with the RSR scheme and the lack of flexibility in choosing

jobs for performing size-reductions. If a job is allocated with size-reduction, its execution

time is increased extensively. If this job is placed in the middle of the system and a large

job which is both memory and communication-intensive wants to enter the system, the

incoming job will be blocked. Therefore, it is important to keep the size-reduced jobs

away from the center of the mesh.

A modified RSR scheme is proposed to be used specifically in an environment where

not all jobs can go through size-reduction. The modified RSR carefully allocates size-

reduced jobs along the periphery of the mesh and therefore avoids the fragmentation.

The hybrid allocation using modified RSR show significant performance improvement

over the original hybrid allocation and constantly outperforms the conventional alloca

tion scheme. It is therefore a good choice of processor management when the character

istics of jobs are specified.

www.manaraa.com

134

9 CONCLUSIONS

9.1 Summary of the Proposed Processor Management Strate

gies

Multicomputers are cost-eflfective alternatives to the expensive conventional parallel

machines. Because of the massive number of processing elements incorporated in build

ing such systems, proper management of these computing resources is essential for the

performance of the system.

In this dissertation, we have studied the performance issues of the processor manage

ment schemes for multicomputer systems. To improve the performance of such systems,

several approaches can be taken. First, one can design better processors to use so that

the computation time of tasks can be reduced. Alternatively, faster interconnection

networks can be implemented so that the communication latency among processors is

minimized. Both these approaches involve re-engineering and replacement of the hard

ware in the system and are costly solutions. However, the major problem associated

with today's multicomputer systems is the underutilization of the computing resources

caused by fragmentation of the processors. The above-mentioned hardware approaches

to improve multicomputer performance do not solve the underutilization problem of

the system. Instead of taking the expensive hardware approaches, this dissertation ex

amines the performance problem in multicomputer systems from the software's point of

view. Several processor management schemes are proposed to tackle the underutilization

problem.

www.manaraa.com

135

The restricted size-reduction scheme proposed in Chapter 3 allocates jobs to a smaller

submesh when the requested submesh cannot be found. The flexibility of being able

to allocate a job to a smaller submesh increases the possibility of allocating a job.

In addition, when jobs can be allocated to smaller number of processors, the number

of simultaneous jobs that the system can execute is increased. The penalty for this

approach is the higher execution time for jobs that cannot obtain all the processors they

requested.

Non-contiguous allocation has the advantage of being free of physical fragmentation.

The problem associated with non-contiguous allocation is the potentially high commu

nication latency incurred by jobs and the risk of saturating the intercommunication

network. Advances in hardware technology such as wormhole switched interconnection

networks have made the communication latency less sensitive to the distance between

the source and destination nodes. Therefore, it is possible for non-contiguous allocation

to take advantage of the faster interconnection network and become the processor allo

cation scheme of choice. We conducted an experimental study on the hypercube-based

nCUBE2 multicomputer system to measure the commimication latency when different

processor allocation alternatives are applied. The results of this experiment reported

in Chapter 4 indicate that, in addition to contiguity, the geometry of the allocated

processors also has significant effect on affecting the conmiunication latency of the job.

Based on the communication latency experiment, we propose the adaptive non

contiguous allocation scheme in Chapter 5. Contiguous allocation is always examined for

the incoming job before non-contiguous allocation is performed. When non-contiguous

allocation is necessary, our algorithm makes sure that partial contiguity and geometry

is preserved in every allocated clusters of processors.

An attempt is also made to integrate the processor allocation and job scheduling in

Chapter 6 to achieve the highest performance possible. An effective scheduling strategy

based on the bypass-queue technique is proposed along with a simple processor alloca

www.manaraa.com

136

tion algorithm. Both the bypass-queue scheduling and the proposed fixed-orientation

allocation have very low complexity and are very suitable to be implemented together.

A possible solution to the fragmentation problem is to migrate the allocated jobs

toward one side of the system so the available processing units in the system are less

fragmented and can be allocated to incoming tasks. Three different alternatives for

performing such job migrations are proposed and studied in Chapter 7

The RSR and ANCA schemes are revolutionary approaches to processor alloca

tion. The cost for performing these schemes is high if the jobs are memory-intensive

or communication-intensive. It would be beneficial if user directives can be used to as

sist the system in deciding the most suitable processor allocation for a job. In Chapter 8,

the effect of using user directives for a hybrid processor allocation is studied. The hybrid

allocation combines the conventional allocation with the RSR and ANCA schemes and

is expected to benefit from this combination. Contradictory to the intuitive expectation,

the hybrid processor allocation does not guarantee a better performance. The reason

for the poor performance is a combination of the high cost associated with the RSR

scheme and the lack of flexibility in choosing the jobs to perform size-reduction or non

contiguous allocation. A modified RSR allocation is proposed to solve this problem in

such an environment and the hybrid allocation using the modified RSR is evaluated.

Extensive simulation was conducted to evaluate the proposed processor management

strategies. All the proposed schemes are capable of reducing the average turnaround

time of a job and improving the operational range of the system. The RSR scheme

is very eflScient in increasing the operational range of the system with only a couple

size-reductions. It always guarantees shorter average turnaround time for jobs when the

system is under medium to high load. It has slightly worse performance when system

load is low because of the penalty incurred for jobs that have their sizes reduced. The

ANCA scheme outperforms the conventional processor allocation policies provided the

communication latency of the jobs can be constrained. Even in the pessimistic scenario

www.manaraa.com

137

when the cost of non-contiguous allocation is assumed to be unreasonably high, it still

shows shorter average turnaround time if the adaptability of the system is high. In most

cases, the ANCA scheme is able to provide better (or at least comparable) performance

than using the conventional allocation algorithms alone.

Both the bypass-queue scheduling and the fixed-orientation allocation proposed in

Chapter 6 have the ability to provide good overall system performance when applied

alone. Combining the two strategies, even further performance improvement can be

achieved. The low complexity to implement the bypass-queue and fixed-orientation

scheduling makes the integration of the two schemes possible. The integrated scheme

has the advantages of low complexity and performs all other conventional processor

management strategies.

The job migration approach is limited by the size and shape constraints of the con

ventional allocation approach. Performing job migration and the allocation failures of

incoming jobs is shown to provide worse performance than the conventional allocation.

This is caused by the cost of migrating jobs in the system. Among the three alternatives

for job migration, migration at job completion has the best performance because it can

best utilize the available processors for the migration process.

Two hybrid allocation schemes are evaluated in an environment when user direc

tives are given. The hybrid allocation which combines the conventional allocation with

RSR and ANCA is shown to be performing worse than doing conventional allocation.

The poor performance is caused by a combination of the high cost associated with the

RSR and the lack of flexibility in performing size-reduction or non-contiguous allocation.

Because of the lack of freedom in choosing jobs for size-reduction or non-contiguous al

location, a job which cannot be allocated using RSR or ANCA might be blocked by a

size-reduced job in the system which is expected to stay in the system for a relatively

longer period of time because of the size-reduction. If the size-reduced job is allocated in

the middle of the mesh, the allocation of the incoming jobs becomes difficult. Another

www.manaraa.com

138

hybrid allocation approaches uses a modified RSR allocation in conjunction with the

conventional and ANCA allocation. The modified RSR only allocates size-reduced jobs

along the periphery. The hybrid allocation using modified RSR is proven to outper

form the conventional allocation under various combinations of memory-intensive and

communication-intensive jobs in the system.

9.2 Concluding Remarks

The performance issue of multicomputer system is studied in this dissertation. The

major challenge in improving the performance of such systems is to solve the low utiliza

tion of the computing resources caused by the inefficient processor management policies.

Fragmentation and the consequent blocking effect are the main reasons for system un-

derutilization.

Various processor management schemes are proposed and evaluated in this disserta

tion. The proposed schemes targeted the fragmentation problem from different perspec

tives. The RSR and ANCA schemes are revolutionary processor allocation approaches to

utilize the available processors. The bypass-queue scheduling and the integrated proces

sor management scheme solves the blocking problem. Job migration approach maintains

the size and shape constraints of the jobs and attempts to improve the system perfor

mance by moving jobs in the system so the available processors are less fragmented.

All the proposed schemes are successful in improving the system performance by

reducing the average turnaround time of jobs. No direct comparison among the pro

posed schemes is attempted in this dissertation because of the differences in the nature

of these approaches. The difference in the nature of these processor management strate

gies makes the selection of a processor management policy important. Each scheme has

its own limitation and may not be applicable under the condition that others can be

used. For example, RSR is constrained by the memory requirement of the jobs and

www.manaraa.com

139

ANCA is limited by the communication patterns. Choice of the proposed processor

management strategies should be done on a cooperative rather than competitive man

ner. The selection of allocation methods should be based on the job's characteristics as

studied in Chapter 8.

On top of the processor allocation, job scheduling is another way to improve the

performance of multicomputer system. As illustrated in Chapter 6, the integration

of processor allocation and job scheduling allows the system to benefit from both ap

proaches. However, complexity associated with processor allocation and job scheduling

is the main factor in designing an integrated policy. The proposed integrated policy has

the advantage of low complexity. If the complexity of the allocation algorithm or the

scheduling policy becomes less significant due to the advance of the processor design or

the requirement of the jobs, integration of more complex and efficient allocation and

scheduling strategies may produce further performance improvement.

9.3 Future Research

A number of studies that can be pursued in the future are listed here. First, most of

the proposed processor management schemes are evaluated with the mesh architecture

only. As other architectures such as the 3D mesh and MINs are gaining popularity, it is

important to study the processor management strategies in those systems. A short-range

goal will be developing algorithms for performing the proposed processor management

strategies for other topologies.

Advancement in the hardware technology will affect the direction of research for the

processor allocation algorithms. Non-contiguous allocation relies on a fast interconnec

tion network and should be emphasised if future hardware design makes the communica

tion latency immune to the distance between communicating nodes. When multithread

processors and large local memory are used, the system will benefit from the concept of

www.manaraa.com

140

size-reduction. In either case, more efficient algorithms are desired. Two important fac

tors is involved in the development of future processor allocation algorithms, the system

performance and the complexity to perform the algorithms. Algorithms that implement

the concepts of size-reduction or non-contiguous allocation require a lot of refinement.

Processor management schemes to use in an environment when jobs characteristics are

known is another direction for future study.

Job scheduling in multiprocessor is a complicate task. Real-time scheduling intro

duces a greater challenge. How to combine processor allocation along with scheduling

strategies to serve real-time jobs, or a combination of real-time and non-real-time jobs

is an interesting topic for future research.

Essentially, the processor management schemes have to be incorporated into the

operating system. The real implementation of requires understanding of the hardware,

the processor management schemes, and the operating system. It is the ultimate goal

of the study of the processor management strategies.

www.manaraa.com

141

BIBLIOGRAPHY

[1] R. E. Kessler and J. L. Schwarzmeier, "Cray T3D: A New Dimension for Cray

Research," Proc. COMPCON, pp. 176-182, Feb. 1993.

[2] Cray, Cray/MPP Announcement, Cray Reserach Inc., Eagan, MN, 1992.

[3] Intel, Paragon XP/S Product Overview, Supercomputer System Division, Intel Cor

poration, Beaverton, OR, 1991.

[4] Intel, A Touchstone DELTA System Description, 1991.

[5] nCUBE, nCUBE 64.OO Processor Manual, nCUBE Company, Beaverton, OR, 1990.

[6] C. B. Stunkel, D. G. Shea, D. G. Grice, P. H. Hochschild, and M. Tsao, "The

SPl high-performance switch," Proc. 1994 Scalable High-Performance Computing

Conference, pp. 150-157, May 1994.

[7] K. Li and K. H. Cheng, "A Two-Dimensional Buddy System for Dynamic Resource

Allocation in a Partitionable Mesh Connected System," Journal of Parallel and

Distributed Computing, 12, pp. 79-83, 1991.

[8] P. J. Chuang and N. F. Tzeng, "Allocating Precise Submesh in Mesh-Connected

Systems," IEEE Trans, on Parallel and Distributed Systems, pp. 211-217, Feb.

1994.

[9] Y. H. Zhu, "Efficient Processor Allocation Strategies for Mesh-Connected Parallel

Computers," Journal of Parallel and Distributed Computing, 16, pp. 328-337, 1992.

www.manaraa.com

142

[10] J. Ding and L. N. Bhuyan, "An Adaptive Suhmesh Allocation Strategy for Two-

Dimensional Mesh Connected Systems," Proc. of Int. Conf on Parallel Processing,

Vol. II, pp. 193-200, Aug. 1993.

[11] D. D. Sharma and D. K. Pradhan, "A Fast and Efficient Strategy for Submesh

Allocation in Mesh-Connected Parallel Computers," Proc. of the 5tli IEEE Symp.

on Parallel and Distributed Processing, pp. 682-693, Dec. 1993.

[12] T. Liu, W-K. Huang, F. Lombardi, and L. N. Bhuyan, "A Submesh Allocation

Scheme for Mesh-Connected Multiprocessor Systems," Proc. of Int. Conf. on Parallel

Processing, vol. 11. pp. 159-163, Aug. 1995.

[13] S. M. Yoo and H. Y. Youn, "An Efficient Task Allocation Scheme for Two-

Dimensional Mesh-Connected Systems," Proc. of the Int. Conf. on Distributed

Computing Systems, pp. 501-508, May 1995.

[14] J. M. Chang, "A High Performance Processor Allocation Strategy," Proc. of the

Int. Conf. on Parallel and Distributed Computing Systems, pp. 110-114, Oct. 1997.

[15] B. S. Yoo and C. Das, "Good Processor Management = Fast Allocation -t- Efficient

Scheduling," Proc. of the 1997 Int. Conf. on Parallel Processing, pp. 280-287, Aug.

1997.

[16] P. D. Kulasinghe, "A Distributed Submesh Allocation Scheme for Two-Dimensional

Mesh-Connected Parallel Computers," Proc. of the Int. Conf. on Parallel and Dis

tributed Computing Systems, pp. 115-119, Oct. 1997.

[17] K. C. Knowlton, "A Fast Storage Allocator," Communications of ACM, vol. 8, pp.

623-625, Oct. 1965.

www.manaraa.com

143

[18] M. S. Chen and K. G. Shin, "Processor Allocation in an N-Cube Multiprocessor

Using Gray Codes," IEEE Trans, on Computers, vol. C-36, NO. 12, pp. 1396-1407,

Dec. 1987.

[19] J. Kim, C. R. Das, and W. Lin, "A Top-Down Processor Allocation Scheme for

Hypercube Computers," IEEE Trans, on Parallel and Distributed Systems, vol. 2,

NO. 1, pp. 20-30, Jan. 1991.

[20] P. J. Chuang and N. F. Tzeng, "Dynamic Processor Allocationin Hypercube Com

puters, " Int. Symp. on Computer Architecture, pp. 40-49, May 1990.

[21] H. Wang and Q. Yang, "Prime Cube Graph Approach for Processor Allocation in

Hypercube Multiprocessors," Int. Conf. on Parallel Processing, pp. 25-32, Aug. 1991.

[22] W. Liu, v. M. Lo, K. Windisch, B. Nitzberg, "Contiguous and Non-contiguous

Processor Allocation Algorithms for k-ary n-cubes," Proceedingsof the 1995 Inter

national Conference on Parallel Processing, 1995.

[23] H. Choo, H. Y. Youn, G. Park, and B. Shirazi, "Efficient Processor Allocation

Scheme for Multi Dimensional Interconnection Networks," Proc. Int. Conf. on Par

allel Processing, pp. 114-117, 1997.

[24] W. J. Dally, "Performance Analysis of k-ary n-Cube Interconnection Networks,"

IEEE Trans. Computers, vol. 39 NO. 6, pp. 775-785, 1990.

[25] W. Liu, V. Lo, K. Windisch, and B. Nitzberg, "Non-continuous Processor Allocation

Algorithms for Distributed Memory Multicomputers," Proc. of 1994 Int. Conf. on

Supercomputing, pp. 227-236, 1994.

[26] J. Mache, V. Lo and K. Windisch, "Minimizing Message-Passing Contention in

Fragmentation-Free Processor Allocation," Proc. of the Int. Conf. on Parallel and

Distributed Computing Systems, pp. 120-124, Oct. 1997.

www.manaraa.com

144

[27] D. D. Shanna, "Processor Allocation in Hypercube Multicomputers: The Random

Allocation Strategy," Proc. of the International Conf. on Parallel and Distributed

Systems, pp. 439-445, Sep. 1995.

[28] D. Babbar and P. Krueger, "A Performance Comparison of Processor Allocation

and Job Scheduling Algorithms for Mesh-Connected Multicomputers," Proc. 6th Int.

IEEE Symposium on Parallel and Distributed Processing, pp. 46-53, October, 1994.

[29] P. Krueger, T. Lai, and V. A. Dixit-Radiya, "Job Scheduling is More Important

than Processor Allocation for Hypercube Computers," IEEE Trans, on Parallel and

Distributed Systems, 5, pp.488-197. May, 1994.

[30] P. Krueger, T. H. Lai, and V. A. Radiya, "Processor Allocation vs. Job Scheduling

on Hypercube Computers," Proc. Int. Conf. on Distributed Computing Systems, pp.

394-401, 1991.

[31] C. Yu, P. Mohapatra and C. R. Das, "Processor Allocation Using a Reservation

Techniques for Hypercube Computers," Proc. of Int. Conf. on Parallel and Dis

tributed Computing and Systems, pp. 147-152, Oct. 1993.

[32] P. Mohapatra, C. Yu and C. R. Das, "A Lazy Scheduling Scheme for Hypercube

Computers," Journal of Parallel and Distributed Computing, 27, pp. 26-37, May,

1995.

[33] D. D. Shanna and D. K. Pradhan, "Job Scheduling in Mesh Multicomputers," Proc.

Int. Conf. on Parallel Processing, vol. II, pp. 251-258, 1994.

[34] D. Min and M. W. Mutka, "Effects of Job Size Irregularity on the Dynamic Resource

Scheduling of a 2-D Mesh Multicomputer," Proc. of PARLE '93, pp. 476-487, 1993.

www.manaraa.com

145

[35] D. Min and M. W. Mutka, "Efficient Job Scheduling in a Mesh Multicomputer

Without Discrimination Against Large Jobs," Proc. of the IEEE Symposium on

Parallel and Distributed Processing pp. 52-59, October, 1995.

[36] C. Y. Chang and P. Mohapatra, "An Integrated Processor Management Policy for

Mesh-Connected Multicomputer Systems," Int. Conf. on Parallel Processing, pp.

118-121, Aug. 1997.

[37] K. SuzaJd, H. Tanuma, S. Hirano and Y. Ichisugi, "A Time Sharing System Scheme

That Uses a Partitioning Algorithm for Mesh-Connected Parallel Computers," Svin-

posium on Parallel and Distributed Processing, 1995.

[38] B. S. Yoo, C. R. Das and C. Yu, ''Processor Management Techniques for Mesh-

Connected Multiprocessors," Proc. of Int. Conf. on Parallel Processing, vol. II, pp.

105-112, Aug. 1995.

[39] D. E. Knuth, The Art of Computer Programming, Volume 1, Fundamental Algo

rithms, Addison-Wesley, 1973.

[40] C. Y. Chang and P. Mohapatra, "An Adaptive Job Allocation Method for the

Directly-Connected Multicomputer Systems," International Conference on Dis

tributed Computing Systems, May, 1996.

[41] C. McCann and J. Zahorjan, "Processor Allocation Policies for Message-Passing

Parallel Computers," Proc. ACM SIGMETRICS Conf. pp. 19-32, May, 1994.

[42] C. Yu and C. R. Das, "Limit Allocation: An Efficient Processor Management

Scheme for Hypercubes," Int. Conf. on Parallel Processing, vol. II, pp. 143-150,

1994.

[43] Y. Zhu and M. Ahuja, "On Job Scheduling on a Hypercube," IEEE Trans, on Parallel

and Distributed Systems, pp. 62-69. January, 1993.

www.manaraa.com

146

[44] K. Ramamritham, J. A. Stankovic, and P. Shiah, "0(n) Scheduling Algorithms for

Real-Time Multiprocessor Systems," Proc. Int. Conf. on Parallel Processing, pp.

143-152, 1989.

[45] K. Ramamritham, J. Stankovic, and P. Shiah, "Efficient Scheduling Algorithms

for Real-Time Multiprocessor Systems," IEEE Trans, on Parallel and Distributed

Systems, pp. 184-194, April 1990.

[46] F. Wang, K. Ramamritham, and J. A. Stankovic, "Bounds on the Performance of

Heuristic Algorithms for Multiprocessor Scheduling of Hard Rea-Time Tasks," Proc.

of the Real-Time Systems Symposium, pp. 136-135, 1992.

[47] D. Babbar and P. Krueger, "On-Line Hard Real-time Scheduling of Parallel Tasks

on Partitionable Multiprocessors," Intemationcil Conference on Parallel Processing,

vol. II, pp. 29 - 38, 1994.

[48] K. S. Hong and J. Y. T. Leung, "On-Line Scheduling of Real-Time Tasks," IEEE

Trans, on Computers, pp. 1326-1331, Oct. 1992.

[49] R. Krishnamurti and B. Naraiiari, "Preemptive Scheduling of Independent Jobs on

Partitionable Parallel Architectures," Int. Conf. on Paradlel Processing, vol. I, pp.

268-275, 1992.

[50] N. G. Shivaratri and M. Singhal, "A Transfer Policy for Global Scheduling Algo

rithms to Schedule Tasks With Deadlines," Proc. of 11th. Int. Conf. on Distributed

Computing Systems, pp. 248 - 255, May 1991.

[51] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo, "Implications of

Classical Scheduling Results for Real-Time Systems," IEEE Computer, pp. 16-25,

June 1995.

www.manaraa.com

147

[52] O. Kwon, J. Kim, S. Hong, and S. Lee, "Real-Time Job Scheduling in Hypercube

Systems," Proc. Int. Conf. on Parallel Processing, pp. 166-169, August, 1997.

[53] M. S. Chen and K. G. Shin, "Subcube Allocation and Task Migration in Hypercube

Multiprocessors," IEEE Trans, on Computers, vol. 39, pp. 1146-1155, Sep. 1990.

[54] S. G. AkI, The Design and Analysis of Parallel Algorithms, Prentice Hall, 1989.

[55] C. Y. Chang and P. Mohapatra, "Experimental Evaluation of Communication La

tency in Multicomputer Systems," Int. Conference on Parallel and Distributed Com

puting Systems, pp. 163-166, Oct. 1997.

[56] J. H. Upadhyay, V. Varavithya and P. Mohapatra, "Efficient and Balanced Adap

tive Routing in Two-Dimensional Meshes," Proc. of the IEEE Symp. on High-

Performance Computer Architecture, pp. 112-121, Jan. 1995.

[57] J. Upadhyay, V. Varavithya, and P. Mohapatra, "Routing Algorithms for Torus

Networks," Proc. Int. Conf. of High Performance Computing, New Delhi, India,

pp. 743-748, December 1995.

[58] S. Q. Moore and L. M. Ni, "The Effect of Network Contention on Processor Allo

cation Strategies," Proc. of the 1996 International Parallel Processing Symposium,

pp. 268-274, AprU 1996.

[59] D. Min and M. W. Mutka, "Effect of Job Interactions Due to Scattered Proces

sor Allocations in 2-D Wormhole Networks," Proc. of Int. Conf. on Parallel and

Distributed Computing Systems, pp. 262-267, Sep. 1995.

[60] I. D. Scherson and P. F. Corbett, "Communication Overhead and the Expected

Speedup of Multidimensional Mesh-Connected Parallel Processors," Journal of Par

allel and Distributed Computing, pp. 86-96, Vol. 11, 1991.

www.manaraa.com

148

[61] T. Eicken, D. E. Ceiller, S. C. Goldstein, and K. E. Schauser, "Active Messages: A

Mechanism for Integrated Communication and Computations," Int. Symposium on

Computer Architecture, pp. 256-266, 1992.

[62] V. Karajncheti and A. A. Chien, "A Comparison of Architectural Support for Mes

saging in the TMC CM-5 and the Cray T3D," Int. Symposium on Computer Ar

chitecture, pp. 298-307, 1995.

[63] A. A. Chien and J. H. Kim, ''Planer-Adaptive Routing: Low-cost Adaptive Networks

for Multiprocessors," Int. Symposium on Computer Architecture, pp. 268-277, 1992.

[64] C. J. Glass and L. M. Ni, "The Turn Model for Adaptive Routing," Int. Symposium

on Computer Architecture, pp. 279-287, 1992.

[65] nCUBE2 Programmer's Guide, nCUBE, 1992.

[66] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programma-

bility, McGraw-Hill, 1993.

[67] G. Amdahl, "Validity of the Single-Processor Approach to Achieving Large Scale

Computing Capabilities," Proc. AFIPS Conf. pp. 483-485, 1967.

[68] X. H. Sun and L. M. Ni, "Scalable Problems and Memory-Bound Speedup," Journal

of Parallel and Distributed Computing, Vol. 19, pp. 27-37, 1993.

[69] S. T. Leutenegger and M. K. Vernon, "The Performance of Multiprogrammed Multi

processor Scheduling Policies," Proc. ACM SIGMETRICS Conf. pp. 226-236, 1990.

[70] J. L. Gustafson, "Reevaluating Amdahl's Law," Comm. of ACM, pp. 532-533, May

1988.

	1997
	Efficient processor management strategies for multicomputer systems
	Chung-Yen Chang
	Recommended Citation

	

